AP123 commited on
Commit
633ca23
·
1 Parent(s): edb396e

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -25
app.py CHANGED
@@ -5,34 +5,19 @@ from PIL import Image
5
  import random
6
  from diffusers import DiffusionPipeline
7
 
8
- # Initialize the DiffusionPipeline model with LoRA weights
9
  pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
10
  pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora")
11
- pipeline.to("cuda:0")
12
-
13
- MAX_SEED = np.iinfo(np.int32).max
14
 
15
  def text_to_image(prompt):
16
- seed = random.randint(0, MAX_SEED)
17
- negative_prompt = "ugly, blurry, nsfw, gore, blood"
18
-
19
- output = pipeline(
20
- prompt=prompt,
21
- negative_prompt=negative_prompt,
22
- width=1024,
23
- height=1024,
24
- guidance_scale=7.0,
25
- num_inference_steps=25,
26
- generator=torch.Generator().manual_seed(seed),
27
- )
28
-
29
- generated_img_tensor = output.images[0]
30
- generated_img_array = generated_img_tensor.cpu().numpy().transpose((1, 2, 0))
31
- return generated_img_array
32
 
33
  def create_cereal_box(input_image):
34
- cover_img = Image.fromarray((input_image.astype(np.uint8)))
35
  template_img = Image.open('CerealBoxMaker/template.jpeg')
 
 
36
  scaling_factor = 1.5
37
  rect_height = int(template_img.height * 0.32)
38
  new_width = int(rect_height * 0.70)
@@ -49,13 +34,15 @@ def create_cereal_box(input_image):
49
  template_copy = template_img.copy()
50
  template_copy.paste(cover_resized_scaled, left_position)
51
  template_copy.paste(cover_resized_scaled, right_position)
 
 
52
  template_copy_array = np.array(template_copy)
53
  return template_copy_array
54
 
55
  def combined_function(prompt):
56
- generated_img_array = text_to_image(prompt)
57
- final_img = create_cereal_box(generated_img_array)
58
  return final_img
59
 
60
- # Create a Gradio Interface
61
- gr.Interface(fn=combined_function, inputs="text", outputs="image").launch(debug=True)
 
5
  import random
6
  from diffusers import DiffusionPipeline
7
 
8
+ # Initialize DiffusionPipeline with LoRA weights
9
  pipeline = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0")
10
  pipeline.load_lora_weights("ostris/super-cereal-sdxl-lora")
 
 
 
11
 
12
  def text_to_image(prompt):
13
+ generated_img = pipeline(prompt)
14
+ return generated_img
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15
 
16
  def create_cereal_box(input_image):
17
+ cover_img = input_image # This should already be a PIL Image
18
  template_img = Image.open('CerealBoxMaker/template.jpeg')
19
+
20
+ # Cereal box creation logic
21
  scaling_factor = 1.5
22
  rect_height = int(template_img.height * 0.32)
23
  new_width = int(rect_height * 0.70)
 
34
  template_copy = template_img.copy()
35
  template_copy.paste(cover_resized_scaled, left_position)
36
  template_copy.paste(cover_resized_scaled, right_position)
37
+
38
+ # Convert to a numpy array for Gradio output
39
  template_copy_array = np.array(template_copy)
40
  return template_copy_array
41
 
42
  def combined_function(prompt):
43
+ generated_img = text_to_image(prompt)
44
+ final_img = create_cereal_box(generated_img)
45
  return final_img
46
 
47
+ # Create Gradio Interface
48
+ gr.Interface(fn=combined_function, inputs="text", outputs="image").launch()