Spaces:
Running
on
Zero
Running
on
Zero
File size: 3,651 Bytes
453ed2e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
import torch
import os
import gradio as gr
from PIL import Image
from diffusers import (
StableDiffusionPipeline,
StableDiffusionControlNetImg2ImgPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
DEISMultistepScheduler,
HeunDiscreteScheduler,
EulerDiscreteScheduler,
)
# Initialize ControlNet model
controlnet = ControlNetModel.from_pretrained(
"DionTimmer/controlnet_qrcode-control_v1p_sd15", torch_dtype=torch.float16
)
# Initialize pipeline
pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(
"XpucT/Deliberate",
controlnet=controlnet,
safety_checker=None,
torch_dtype=torch.float16,
).to("cuda")
pipe.enable_xformers_memory_efficient_attention()
# Sampler configurations
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
# Inference function
def inference(
input_image: Image.Image,
prompt: str,
negative_prompt: str,
guidance_scale: float = 10.0,
controlnet_conditioning_scale: float = 1.0,
strength: float = 0.8,
seed: int = -1,
sampler = "DPM++ Karras SDE",
):
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
pipe.scheduler = SAMPLER_MAP[sampler](pipe.scheduler.config)
generator = torch.manual_seed(seed) if seed != -1 else torch.Generator()
out = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=input_image,
control_image=input_image, # type: ignore
width=512, # type: ignore
height=512, # type: ignore
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale), # type: ignore
generator=generator,
strength=float(strength),
num_inference_steps=40,
)
return out.images[0] # type: ignore
# Gradio UI
with gr.Blocks() as app:
gr.Markdown(
'''
# Illusion Diffusion
## A simple UI for generating beatiful illusion art with Stable Diffusion 1.5
'''
)
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Illusion", type="pil")
prompt = gr.Textbox(label="Prompt", info="Prompt that guides the generation towards")
negative_prompt = gr.Textbox(label="Negative Prompt", value="ugly, disfigured, low quality, blurry, nsfw")
with gr.Accordion(label="Advanced Options", open=False):
controlnet_conditioning_scale = gr.Slider(minimum=0.0, maximum=5.0, step=0.01, value=1.1, label="Controlnet Conditioning Scale")
strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=0.9, label="Strength")
guidance_scale = gr.Slider(minimum=0.0, maximum=50.0, step=0.25, value=7.5, label="Guidance Scale")
sampler = gr.Dropdown(choices=list(SAMPLER_MAP.keys()), value="DPM++ Karras SDE")
seed = gr.Slider(minimum=-1, maximum=9999999999, step=1, value=2313123, label="Seed", randomize=True)
run_btn = gr.Button("Run")
with gr.Column():
result_image = gr.Image(label="Illusion Diffusion Output")
run_btn.click(
inference,
inputs=[input_image, prompt, negative_prompt, guidance_scale, controlnet_conditioning_scale, strength, seed, sampler],
outputs=[result_image]
)
app.queue(concurrency_count=4, max_size=20)
if __name__ == "__main__":
app.launch(debug=True) |