Akarimvand's picture
Update app.py
842563d verified
raw
history blame
6.21 kB
import spaces
import torch
import gradio as gr
from PIL import Image
import random
from diffusers import (
DiffusionPipeline,
AutoencoderKL,
StableDiffusionControlNetPipeline,
ControlNetModel,
StableDiffusionLatentUpscalePipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionControlNetImg2ImgPipeline,
DPMSolverMultistepScheduler,
EulerDiscreteScheduler
)
import tempfile
import time
import os
from transformers import CLIPImageProcessor
BASE_MODEL = "SG161222/Realistic_Vision_V5.1_noVAE"
# Initialize both pipelines
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse", torch_dtype=torch.float16)
controlnet = ControlNetModel.from_pretrained("monster-labs/control_v1p_sd15_qrcode_monster", torch_dtype=torch.float16)
# Initialize the safety checker conditionally
SAFETY_CHECKER_ENABLED = os.environ.get("SAFETY_CHECKER", "0") == "1"
safety_checker = None
feature_extractor = None
if SAFETY_CHECKER_ENABLED:
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker").to("cuda")
feature_extractor = CLIPImageProcessor.from_pretrained("openai/clip-vit-base-patch32")
main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
BASE_MODEL,
controlnet=controlnet,
vae=vae,
safety_checker=safety_checker,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
).to("cuda")
# Sampler map
SAMPLER_MAP = {
"DPM++ Karras SDE": lambda config: DPMSolverMultistepScheduler.from_config(config, use_karras=True, algorithm_type="sde-dpmsolver++"),
"Euler": lambda config: EulerDiscreteScheduler.from_config(config),
}
def center_crop_resize(img, output_size=(512, 512)):
width, height = img.size
new_dimension = min(width, height)
left = (width - new_dimension) / 2
top = (height - new_dimension) / 2
right = (width + new_dimension) / 2
bottom = (height + new_dimension) / 2
img = img.crop((left, top, right, bottom))
img = img.resize(output_size)
return img
def common_upscale(samples, width, height, upscale_method, crop=False):
if crop == "center":
old_width = samples.shape[3]
old_height = samples.shape[2]
old_aspect = old_width / old_height
new_aspect = width / height
x = 0
y = 0
if old_aspect > new_aspect:
x = round((old_width - old_width * (new_aspect / old_aspect)) / 2)
elif old_aspect < new_aspect:
y = round((old_height - old_height * (old_aspect / new_aspect)) / 2)
s = samples[:, :, y:old_height - y, x:old_width - x]
else:
s = samples
return torch.nn.functional.interpolate(s, size=(height, width), mode=upscale_method)
def upscale(samples, upscale_method, scale_by):
width = round(samples["images"].shape[3] * scale_by)
height = round(samples["images"].shape[2] * scale_by)
s = common_upscale(samples["images"], width, height, upscale_method, "disabled")
return s
def check_inputs(prompt: str, control_image: Image.Image):
if control_image is None:
raise gr.Error("Please select or upload an Input Illusion")
if prompt is None or prompt == "":
raise gr.Error("Prompt is required")
@spaces.GPU
def inference(control_image: Image.Image, prompt: str, negative_prompt: str,
guidance_scale: float = 8.0,
controlnet_conditioning_scale: float = 1,
control_guidance_start: float = 1,
control_guidance_end: float = 1,
upscaler_strength: float = 0.5,
seed: int = -1,
sampler="DPM++ Karras SDE",
progress=gr.Progress(track_tqdm=True),
profile=None):
start_time = time.time()
control_image_small = center_crop_resize(control_image)
main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
generator = torch.Generator(device="cuda").manual_seed(my_seed)
out = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=control_image_small,
guidance_scale=float(guidance_scale),
controlnet_conditioning_scale=float(controlnet_conditioning_scale),
generator=generator,
control_guidance_start=float(control_guidance_start),
control_guidance_end=float(control_guidance_end),
num_inference_steps=15,
output_type="latent"
)
upscaled_latents = upscale(out, "nearest-exact", 2)
out_image = main_pipe(
prompt=prompt,
negative_prompt=negative_prompt,
control_image=center_crop_resize(control_image, (1024, 1024)),
image=upscaled_latents,
guidance_scale=float(guidance_scale),
generator=generator,
num_inference_steps=20,
strength=upscaler_strength,
control_guidance_start=float(control_guidance_start),
control_guidance_end=float(control_guidance_end),
controlnet_conditioning_scale=float(controlnet_conditioning_scale)
)
end_time = time.time()
# Save image + metadata logic here
with gr.Blocks() as app:
gr.Markdown('''
<div style="text-align: center;">
<h1>Illusion Diffusion HQ πŸŒ€</h1>
<p style="font-size:16px;">Generate stunning high quality illusion artwork with Stable Diffusion</p>
</div>
''')
with gr.Row():
with gr.Column():
control_image = gr.Image(label="Input Illusion", type="pil")
prompt = gr.Textbox(label="Prompt", placeholder="Medieval village scene with busy streets and castle in the distance")
negative_prompt = gr.Textbox(label="Negative Prompt", value="low quality")
run_btn = gr.Button("Run")
result_image = gr.Image(label="Illusion Diffusion Output", interactive=False)
run_btn.click(check_inputs, inputs=[prompt, control_image]).success(
inference, inputs=[control_image, prompt, negative_prompt], outputs=[result_image]
)
if __name__ == "__main__":
app.launch()