patrickvonplaten commited on
Commit
2b0be71
·
1 Parent(s): c1f6c62

Improve mem usage

Browse files
Files changed (1) hide show
  1. app.py +4 -2
app.py CHANGED
@@ -31,11 +31,13 @@ main_pipe = StableDiffusionControlNetPipeline.from_pretrained(
31
  safety_checker=None,
32
  torch_dtype=torch.float16,
33
  ).to("cuda")
 
34
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
35
  #main_pipe.unet.to(memory_format=torch.channels_last)
36
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
37
  #model_id = "stabilityai/sd-x2-latent-upscaler"
38
- image_pipe = StableDiffusionControlNetImg2ImgPipeline.from_pretrained(BASE_MODEL, unet=main_pipe.unet, vae=vae, controlnet=controlnet, safety_checker=None, torch_dtype=torch.float16).to("cuda")
 
39
  #image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
40
  #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
41
  #upscaler.to("cuda")
@@ -112,7 +114,7 @@ def inference(
112
  control_image_small = center_crop_resize(control_image)
113
  main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
114
  my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
115
- generator = torch.manual_seed(my_seed)
116
 
117
  out = main_pipe(
118
  prompt=prompt,
 
31
  safety_checker=None,
32
  torch_dtype=torch.float16,
33
  ).to("cuda")
34
+
35
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
36
  #main_pipe.unet.to(memory_format=torch.channels_last)
37
  #main_pipe.unet = torch.compile(main_pipe.unet, mode="reduce-overhead", fullgraph=True)
38
  #model_id = "stabilityai/sd-x2-latent-upscaler"
39
+ image_pipe = StableDiffusionControlNetImg2ImgPipeline(**main_pipe.components)
40
+
41
  #image_pipe.unet = torch.compile(image_pipe.unet, mode="reduce-overhead", fullgraph=True)
42
  #upscaler = StableDiffusionLatentUpscalePipeline.from_pretrained(model_id, torch_dtype=torch.float16)
43
  #upscaler.to("cuda")
 
114
  control_image_small = center_crop_resize(control_image)
115
  main_pipe.scheduler = SAMPLER_MAP[sampler](main_pipe.scheduler.config)
116
  my_seed = random.randint(0, 2**32 - 1) if seed == -1 else seed
117
+ generator = torch.Generator(device="cuda").manual_seed(seed)
118
 
119
  out = main_pipe(
120
  prompt=prompt,