Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,9 +1,10 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import torch
|
| 4 |
-
import
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
-
|
| 7 |
|
| 8 |
gr.Interface.load("models/APJ23/MultiHeaded_Sentiment_Analysis_Model").launch()
|
| 9 |
|
|
@@ -19,15 +20,14 @@ classes = {
|
|
| 19 |
5: 'Insult',
|
| 20 |
6: 'Identity Hate'
|
| 21 |
}
|
| 22 |
-
|
| 23 |
@st.cache(allow_output_mutation=True)
|
| 24 |
-
def predict_toxicity(tweet,
|
| 25 |
inputs = tokenizer(tweet, return_tensors="pt", padding=True, truncation=True)
|
| 26 |
outputs = model(**inputs)
|
| 27 |
predicted_class = torch.argmax(outputs.logits, dim=1)
|
| 28 |
predicted_prob = torch.softmax(outputs.logits, dim=1)[0][predicted_class].item()
|
| 29 |
return classes[predicted_class], predicted_prob
|
| 30 |
-
|
| 31 |
def create_table(predictions):
|
| 32 |
data = {'Tweet': [], 'Highest Toxicity Class': [], 'Probability': []}
|
| 33 |
for tweet, prediction in predictions.items():
|
|
@@ -37,25 +37,23 @@ def create_table(predictions):
|
|
| 37 |
df = pd.DataFrame(data)
|
| 38 |
return df
|
| 39 |
|
| 40 |
-
async def run_async_prediction(tweet, model, tokenizer):
|
| 41 |
-
loop = asyncio.get_event_loop()
|
| 42 |
-
prediction = await loop.run_in_executor(None, predict_toxicity, tweet, model, tokenizer)
|
| 43 |
-
return prediction
|
| 44 |
-
|
| 45 |
st.title('Toxicity Prediction App')
|
| 46 |
-
|
| 47 |
|
| 48 |
-
|
| 49 |
-
predictions = {tweet_input: None}
|
| 50 |
loop = asyncio.new_event_loop()
|
| 51 |
asyncio.set_event_loop(loop)
|
| 52 |
-
|
| 53 |
-
predictions[tweet_input] = prediction
|
| 54 |
loop.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
|
|
|
| 57 |
prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})'
|
| 58 |
st.write(prediction_text)
|
| 59 |
-
|
| 60 |
table = create_table(predictions)
|
| 61 |
st.table(table)
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import pandas as pd
|
| 3 |
import torch
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 5 |
+
import random as r
|
| 6 |
import gradio as gr
|
| 7 |
+
import asyncio
|
| 8 |
|
| 9 |
gr.Interface.load("models/APJ23/MultiHeaded_Sentiment_Analysis_Model").launch()
|
| 10 |
|
|
|
|
| 20 |
5: 'Insult',
|
| 21 |
6: 'Identity Hate'
|
| 22 |
}
|
|
|
|
| 23 |
@st.cache(allow_output_mutation=True)
|
| 24 |
+
def predict_toxicity(tweet,model,tokenizer):
|
| 25 |
inputs = tokenizer(tweet, return_tensors="pt", padding=True, truncation=True)
|
| 26 |
outputs = model(**inputs)
|
| 27 |
predicted_class = torch.argmax(outputs.logits, dim=1)
|
| 28 |
predicted_prob = torch.softmax(outputs.logits, dim=1)[0][predicted_class].item()
|
| 29 |
return classes[predicted_class], predicted_prob
|
| 30 |
+
|
| 31 |
def create_table(predictions):
|
| 32 |
data = {'Tweet': [], 'Highest Toxicity Class': [], 'Probability': []}
|
| 33 |
for tweet, prediction in predictions.items():
|
|
|
|
| 37 |
df = pd.DataFrame(data)
|
| 38 |
return df
|
| 39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
st.title('Toxicity Prediction App')
|
| 41 |
+
tweet=st.text_input('Enter a tweet to check for toxicity')
|
| 42 |
|
| 43 |
+
async def predict_toxicity_async(tweet, model, tokenizer):
|
|
|
|
| 44 |
loop = asyncio.new_event_loop()
|
| 45 |
asyncio.set_event_loop(loop)
|
| 46 |
+
result = await loop.run_until_complete(predict_toxicity(tweet, model, tokenizer))
|
|
|
|
| 47 |
loop.close()
|
| 48 |
+
return result
|
| 49 |
+
|
| 50 |
+
def predict_toxicity_sync(tweet, model, tokenizer):
|
| 51 |
+
return asyncio.run(predict_toxicity_async(tweet, model, tokenizer))
|
| 52 |
|
| 53 |
+
if st.button('Predict'):
|
| 54 |
+
predicted_class_label, predicted_prob = predict_toxicity_sync(tweet, model, tokenizer)
|
| 55 |
prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})'
|
| 56 |
st.write(prediction_text)
|
| 57 |
+
predictions = {tweet: (predicted_class_label, predicted_prob)}
|
| 58 |
table = create_table(predictions)
|
| 59 |
st.table(table)
|