APJ23 commited on
Commit
eb9f908
·
1 Parent(s): e351e24

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +2 -25
app.py CHANGED
@@ -3,19 +3,9 @@ import pandas as pd
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
 
6
- # Define the available models to choose from
7
- models = {
8
- 'BERT': 'bert-base-uncased',
9
- 'RoBERTa': 'roberta-base',
10
- 'DistilBERT': 'distilbert-base-uncased'
11
- }
12
-
13
- # Create a drop-down menu to select the model
14
- model_name = st.sidebar.selectbox('Select Model', list(models.keys()))
15
 
16
- # Load the tokenizer and model
17
- tokenizer = AutoTokenizer.from_pretrained(models[model_name])
18
- model = AutoModelForSequenceClassification.from_pretrained(models[model_name])
19
 
20
  # Define the classes and their corresponding labels
21
  classes = {
@@ -30,17 +20,6 @@ classes = {
30
 
31
  # Create a function to generate the toxicity predictions
32
  @st.cache(allow_output_mutation=True)
33
- def predict_toxicity(tweet, model, tokenizer):
34
- # Preprocess the text
35
- inputs = tokenizer(tweet, padding=True, truncation=True, return_tensors='pt')
36
- # Get the predictions from the model
37
- outputs = model(**inputs)
38
- predictions = torch.nn.functional.softmax(outputs.logits, dim=1).detach().numpy()
39
- # Get the class with the highest probability
40
- predicted_class = int(predictions.argmax())
41
- predicted_class_label = classes[predicted_class]
42
- predicted_prob = predictions[0][predicted_class]
43
- return predicted_class_label, predicted_prob
44
 
45
  # Create a table to display the toxicity predictions
46
  def create_table(predictions):
@@ -52,11 +31,9 @@ def create_table(predictions):
52
  df = pd.DataFrame(data)
53
  return df
54
 
55
- # Create the user interface
56
  st.title('Toxicity Prediction App')
57
  tweet_input = st.text_input('Enter a tweet:')
58
  if st.button('Predict'):
59
- # Generate the toxicity prediction for the tweet using the selected model
60
  predicted_class_label, predicted_prob = predict_toxicity(tweet_input, model, tokenizer)
61
  prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})'
62
  st.write(prediction_text)
 
3
  import torch
4
  from transformers import AutoTokenizer, AutoModelForSequenceClassification
5
 
 
 
 
 
 
 
 
 
 
6
 
7
+ tokenizer = AutoTokenizer.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model")
8
+ model = AutoModelForSequenceClassification.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model")
 
9
 
10
  # Define the classes and their corresponding labels
11
  classes = {
 
20
 
21
  # Create a function to generate the toxicity predictions
22
  @st.cache(allow_output_mutation=True)
 
 
 
 
 
 
 
 
 
 
 
23
 
24
  # Create a table to display the toxicity predictions
25
  def create_table(predictions):
 
31
  df = pd.DataFrame(data)
32
  return df
33
 
 
34
  st.title('Toxicity Prediction App')
35
  tweet_input = st.text_input('Enter a tweet:')
36
  if st.button('Predict'):
 
37
  predicted_class_label, predicted_prob = predict_toxicity(tweet_input, model, tokenizer)
38
  prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})'
39
  st.write(prediction_text)