import streamlit as st import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import random as r import asyncio import gradio as gr tokenizer = AutoTokenizer.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model") model = AutoModelForSequenceClassification.from_pretrained("APJ23/MultiHeaded_Sentiment_Analysis_Model") classes = { 0: 'Non-Toxic', 1: 'Toxic', 2: 'Severely Toxic', 3: 'Obscene', 4: 'Threat', 5: 'Insult', 6: 'Identity Hate' } @st.cache(allow_output_mutation=True) def prediction(tweet, model, tokenizer): inputs = tokenizer(tweet, return_tensors="pt", padding=True, truncation=True) outputs = model(**inputs) predicted_class = torch.argmax(outputs.logits, dim=1).item() predicted_prob = torch.softmax(outputs.logits, dim=1)[0][predicted_class].item() return classes[predicted_class], predicted_prob def create_table(predictions): data = {'Tweet': [], 'Highest Toxicity Class': [], 'Probability': []} for tweet, prediction in predictions.items(): data['Tweet'].append(tweet) data['Highest Toxicity Class'].append(prediction[0]) data['Probability'].append(prediction[1]) df = pd.DataFrame(data) return df st.title('Toxicity Prediction App') tweet = st.text_input('Enter a tweet to check for toxicity') if st.button('Predict'): predicted_class_label, predicted_prob = prediction(tweet, model, tokenizer) prediction_text = f'Prediction: {predicted_class_label} ({predicted_prob:.2f})' st.write(prediction_text) predictions = {tweet: (predicted_class_label, predicted_prob)} table = create_table(predictions) st.table(table)