Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
for val in history:
|
21 |
-
if val[0]:
|
22 |
-
messages.append({"role": "user", "content": val[0]})
|
23 |
-
if val[1]:
|
24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
response = ""
|
29 |
-
|
30 |
-
for message in client.chat_completion(
|
31 |
-
messages,
|
32 |
-
max_tokens=max_tokens,
|
33 |
-
stream=True,
|
34 |
-
temperature=temperature,
|
35 |
-
top_p=top_p,
|
36 |
-
):
|
37 |
-
token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
response += token
|
40 |
-
yield response
|
41 |
-
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
-
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
-
additional_inputs=[
|
49 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
-
],
|
60 |
)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
#pip install langchain_google_genai langgraph gradio
|
2 |
+
import os
|
3 |
+
import typing
|
4 |
+
from typing import Annotated, Literal, Iterable
|
5 |
+
from typing_extensions import TypedDict
|
6 |
+
|
7 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
8 |
+
from langgraph.graph import StateGraph, START, END
|
9 |
+
from langgraph.graph.message import add_messages
|
10 |
+
from langgraph.prebuilt import ToolNode
|
11 |
+
from langchain_core.tools import tool
|
12 |
+
from langchain_core.messages import AIMessage, ToolMessage, HumanMessage, BaseMessage, SystemMessage
|
13 |
+
from random import randint
|
14 |
+
|
15 |
+
from tkinter import messagebox
|
16 |
+
#messagebox.showinfo("Test", "Script run successfully")
|
17 |
+
|
18 |
import gradio as gr
|
19 |
+
import logging
|
20 |
+
|
21 |
+
class OrderState(TypedDict):
|
22 |
+
"""State representing the customer's order conversation."""
|
23 |
+
messages: Annotated[list, add_messages]
|
24 |
+
order: list[str]
|
25 |
+
finished: bool
|
26 |
+
|
27 |
+
# System instruction for the BaristaBot
|
28 |
+
BARISTABOT_SYSINT = (
|
29 |
+
"system",
|
30 |
+
"You are a BaristaBot, an interactive cafe ordering system. A human will talk to you about the "
|
31 |
+
"available products. Answer questions about menu items, help customers place orders, and "
|
32 |
+
"confirm details before finalizing. Use the provided tools to manage the order."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
)
|
34 |
|
35 |
+
WELCOME_MSG = "Welcome to the BaristaBot cafe. Type `q` to quit. How may I serve you today?"
|
36 |
+
|
37 |
+
# Initialize the Google Gemini LLM
|
38 |
+
llm = ChatGoogleGenerativeAI(model="gemini-1.5-flash-latest")
|
39 |
+
|
40 |
+
@tool
|
41 |
+
def get_menu() -> str:
|
42 |
+
"""Provide the cafe menu."""
|
43 |
+
#messagebox.showinfo("Test", "Script run successfully")
|
44 |
+
with open("menu.txt", 'r', encoding = "UTF-8") as f:
|
45 |
+
return f.read()
|
46 |
+
|
47 |
+
@tool
|
48 |
+
def add_to_order(drink: str, modifiers: Iterable[str] = []) -> str:
|
49 |
+
"""Adds the specified drink to the customer's order."""
|
50 |
+
return f"{drink} ({', '.join(modifiers) if modifiers else 'no modifiers'})"
|
51 |
+
|
52 |
+
@tool
|
53 |
+
def confirm_order() -> str:
|
54 |
+
"""Asks the customer to confirm the order."""
|
55 |
+
return "Order confirmation requested"
|
56 |
+
|
57 |
+
@tool
|
58 |
+
def get_order() -> str:
|
59 |
+
"""Returns the current order."""
|
60 |
+
return "Current order details requested"
|
61 |
+
|
62 |
+
@tool
|
63 |
+
def clear_order() -> str:
|
64 |
+
"""Clears the current order."""
|
65 |
+
return "Order cleared"
|
66 |
+
|
67 |
+
@tool
|
68 |
+
def place_order() -> int:
|
69 |
+
"""Sends the order to the kitchen."""
|
70 |
+
messagebox.showinfo("Test", "Order successful!")
|
71 |
+
return randint(2, 10) # Estimated wait time
|
72 |
+
|
73 |
+
def chatbot_with_tools(state: OrderState) -> OrderState:
|
74 |
+
"""Chatbot with tool handling."""
|
75 |
+
logging.info(f"Messagelist sent to chatbot node: {[msg.content for msg in state.get('messages', [])]}")
|
76 |
+
defaults = {"order": [], "finished": False}
|
77 |
+
|
78 |
+
# Ensure we always have at least a system message
|
79 |
+
if not state.get("messages", []):
|
80 |
+
new_output = AIMessage(content=WELCOME_MSG)
|
81 |
+
return defaults | state | {"messages": [SystemMessage(content=BARISTABOT_SYSINT), new_output]}
|
82 |
+
|
83 |
+
try:
|
84 |
+
# Prepend system instruction if not already present
|
85 |
+
messages_with_system = [
|
86 |
+
SystemMessage(content=BARISTABOT_SYSINT)
|
87 |
+
] + state.get("messages", [])
|
88 |
+
|
89 |
+
# Process messages through the LLM
|
90 |
+
new_output = llm_with_tools.invoke(messages_with_system)
|
91 |
+
|
92 |
+
return defaults | state | {"messages": [new_output]}
|
93 |
+
except Exception as e:
|
94 |
+
# Fallback if LLM processing fails
|
95 |
+
return defaults | state | {"messages": [AIMessage(content=f"I'm having trouble processing that. {str(e)}")]}
|
96 |
+
|
97 |
+
def order_node(state: OrderState) -> OrderState:
|
98 |
+
"""Handles order-related tool calls."""
|
99 |
+
logging.info("order node")
|
100 |
+
tool_msg = state.get("messages", [])[-1]
|
101 |
+
order = state.get("order", [])
|
102 |
+
outbound_msgs = []
|
103 |
+
order_placed = False
|
104 |
+
|
105 |
+
for tool_call in tool_msg.tool_calls:
|
106 |
+
tool_name = tool_call["name"]
|
107 |
+
tool_args = tool_call["args"]
|
108 |
+
|
109 |
+
if tool_name == "add_to_order":
|
110 |
+
modifiers = tool_args.get("modifiers", [])
|
111 |
+
modifier_str = ", ".join(modifiers) if modifiers else "no modifiers"
|
112 |
+
order.append(f'{tool_args["drink"]} ({modifier_str})')
|
113 |
+
response = "\n".join(order)
|
114 |
+
|
115 |
+
elif tool_name == "confirm_order":
|
116 |
+
response = "Your current order:\n" + "\n".join(order) + "\nIs this correct?"
|
117 |
+
|
118 |
+
elif tool_name == "get_order":
|
119 |
+
response = "\n".join(order) if order else "(no order)"
|
120 |
+
|
121 |
+
elif tool_name == "clear_order":
|
122 |
+
order.clear()
|
123 |
+
response = "Order cleared"
|
124 |
+
|
125 |
+
elif tool_name == "place_order":
|
126 |
+
order_text = "\n".join(order)
|
127 |
+
order_placed = True
|
128 |
+
response = f"Order placed successfully!\nYour order:\n{order_text}\nEstimated wait: {randint(2, 10)} minutes"
|
129 |
+
|
130 |
+
else:
|
131 |
+
raise NotImplementedError(f'Unknown tool call: {tool_name}')
|
132 |
+
|
133 |
+
outbound_msgs.append(
|
134 |
+
ToolMessage(
|
135 |
+
content=response,
|
136 |
+
name=tool_name,
|
137 |
+
tool_call_id=tool_call["id"],
|
138 |
+
)
|
139 |
+
)
|
140 |
+
|
141 |
+
return {"messages": outbound_msgs, "order": order, "finished": order_placed}
|
142 |
+
|
143 |
+
def maybe_route_to_tools(state: OrderState) -> str:
|
144 |
+
"""Route between chat and tool nodes."""
|
145 |
+
if not (msgs := state.get("messages", [])):
|
146 |
+
raise ValueError(f"No messages found when parsing state: {state}")
|
147 |
+
|
148 |
+
msg = msgs[-1]
|
149 |
+
|
150 |
+
if state.get("finished", False):
|
151 |
+
logging.info("from chatbot GOTO End node")
|
152 |
+
return END
|
153 |
+
|
154 |
+
elif hasattr(msg, "tool_calls") and len(msg.tool_calls) > 0:
|
155 |
+
if any(tool["name"] in tool_node.tools_by_name.keys() for tool in msg.tool_calls):
|
156 |
+
logging.info("from chatbot GOTO tools node")
|
157 |
+
return "tools"
|
158 |
+
else:
|
159 |
+
logging.info("from chatbot GOTO order node")
|
160 |
+
return "ordering"
|
161 |
+
|
162 |
+
else:
|
163 |
+
logging.info("from chatbot GOTO human node")
|
164 |
+
return "human"
|
165 |
+
|
166 |
+
def human_node(state: OrderState) -> OrderState:
|
167 |
+
"""Handle user input."""
|
168 |
+
logging.info(f"Messagelist sent to human node: {[msg.content for msg in state.get('messages', [])]}")
|
169 |
+
last_msg = state["messages"][-1]
|
170 |
+
|
171 |
+
if last_msg.content.lower() in {"q", "quit", "exit", "goodbye"}:
|
172 |
+
state["finished"] = True
|
173 |
+
|
174 |
+
return state
|
175 |
+
|
176 |
+
def maybe_exit_human_node(state: OrderState) -> Literal["chatbot", "__end__"]:
|
177 |
+
"""Determine if conversation should continue."""
|
178 |
+
if state.get("finished", False):
|
179 |
+
logging.info("from human GOTO End node")
|
180 |
+
return END
|
181 |
+
last_msg = state["messages"][-1]
|
182 |
+
if isinstance(last_msg, AIMessage):
|
183 |
+
logging.info("Chatbot response obtained, ending conversation")
|
184 |
+
return END
|
185 |
+
else:
|
186 |
+
logging.info("from human GOTO chatbot node")
|
187 |
+
return "chatbot"
|
188 |
+
|
189 |
+
# Prepare tools
|
190 |
+
auto_tools = [get_menu]
|
191 |
+
tool_node = ToolNode(auto_tools)
|
192 |
+
|
193 |
+
order_tools = [add_to_order, confirm_order, get_order, clear_order, place_order]
|
194 |
+
|
195 |
+
# Bind all tools to the LLM
|
196 |
+
llm_with_tools = llm.bind_tools(auto_tools + order_tools)
|
197 |
+
|
198 |
+
# Build the graph
|
199 |
+
graph_builder = StateGraph(OrderState)
|
200 |
+
|
201 |
+
# Add nodes
|
202 |
+
graph_builder.add_node("chatbot", chatbot_with_tools)
|
203 |
+
graph_builder.add_node("human", human_node)
|
204 |
+
graph_builder.add_node("tools", tool_node)
|
205 |
+
graph_builder.add_node("ordering", order_node)
|
206 |
+
|
207 |
+
# Add edges and routing
|
208 |
+
graph_builder.add_conditional_edges("chatbot", maybe_route_to_tools)
|
209 |
+
graph_builder.add_conditional_edges("human", maybe_exit_human_node)
|
210 |
+
graph_builder.add_edge("tools", "chatbot")
|
211 |
+
graph_builder.add_edge("ordering", "chatbot")
|
212 |
+
graph_builder.add_edge(START, "human")
|
213 |
+
|
214 |
+
# Compile the graph
|
215 |
+
chat_graph = graph_builder.compile()
|
216 |
+
|
217 |
+
def convert_history_to_messages(history: list) -> list[BaseMessage]:
|
218 |
+
"""
|
219 |
+
Convert Gradio chat history to a list of Langchain messages.
|
220 |
+
|
221 |
+
Args:
|
222 |
+
- history: Gradio's chat history format
|
223 |
+
|
224 |
+
Returns:
|
225 |
+
- List of Langchain BaseMessage objects
|
226 |
+
"""
|
227 |
+
messages = []
|
228 |
+
for human, ai in history:
|
229 |
+
if human:
|
230 |
+
messages.append(HumanMessage(content=human))
|
231 |
+
if ai:
|
232 |
+
messages.append(AIMessage(content=ai))
|
233 |
+
return messages
|
234 |
+
|
235 |
+
def gradio_chat(message: str, history: list) -> str:
|
236 |
+
"""
|
237 |
+
Gradio-compatible chat function that manages the conversation state.
|
238 |
+
|
239 |
+
Args:
|
240 |
+
- message: User's input message
|
241 |
+
- history: Gradio's chat history
|
242 |
+
|
243 |
+
Returns:
|
244 |
+
- Bot's response as a string
|
245 |
+
"""
|
246 |
+
logging.info(f"{len(history)} history so far: {history}")
|
247 |
+
# Ensure non-empty message
|
248 |
+
if not message or message.strip() == "":
|
249 |
+
message = "Hello, how can I help you today?"
|
250 |
+
|
251 |
+
# Convert history to Langchain messages
|
252 |
+
conversation_messages = []
|
253 |
+
for old_message in history:
|
254 |
+
if old_message["content"].strip():
|
255 |
+
if old_message["role"] == "user":
|
256 |
+
conversation_messages.append(HumanMessage(content=old_message["content"]))
|
257 |
+
if old_message["role"] == "assistant":
|
258 |
+
conversation_messages.append(AIMessage(content=old_message["content"]))
|
259 |
+
|
260 |
+
# Add current message
|
261 |
+
conversation_messages.append(HumanMessage(content=message))
|
262 |
+
|
263 |
+
# Create initial state with conversation history
|
264 |
+
conversation_state = {
|
265 |
+
"messages": conversation_messages,
|
266 |
+
"order": [],
|
267 |
+
"finished": False
|
268 |
+
}
|
269 |
+
logging.info(f"Conversation so far: {str(conversation_state)}")
|
270 |
+
try:
|
271 |
+
# Process the conversation through the graph
|
272 |
+
conversation_state = chat_graph.invoke(conversation_state, {"recursion_limit": 10})
|
273 |
+
|
274 |
+
# Extract the latest bot message
|
275 |
+
latest_message = conversation_state["messages"][-1]
|
276 |
+
|
277 |
+
# Return the bot's response content
|
278 |
+
logging.info(f"return: {latest_message.content}")
|
279 |
+
return latest_message.content
|
280 |
+
|
281 |
+
except Exception as e:
|
282 |
+
return f"An error occurred: {str(e)}"
|
283 |
+
|
284 |
+
# Gradio interface
|
285 |
+
def launch_baristabot():
|
286 |
+
gr.ChatInterface(
|
287 |
+
gradio_chat,
|
288 |
+
type="messages",
|
289 |
+
title="BaristaBot",
|
290 |
+
description="Your friendly AI cafe assistant",
|
291 |
+
theme="ocean"
|
292 |
+
).launch()
|
293 |
|
294 |
if __name__ == "__main__":
|
295 |
+
# initiate logging tool
|
296 |
+
logging.basicConfig(filename='log.log',
|
297 |
+
level=logging.INFO,
|
298 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
299 |
+
launch_baristabot()
|