File size: 4,225 Bytes
6c0c37c
 
 
 
 
 
9e1e3ef
6c0c37c
9e1e3ef
 
 
 
 
6c0c37c
 
 
c05ab88
 
 
6c0c37c
9e1e3ef
6c0c37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1e3ef
6c0c37c
9e1e3ef
 
 
 
 
 
 
 
 
6c0c37c
9e1e3ef
 
6c0c37c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e1e3ef
6c0c37c
9e1e3ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c0c37c
9e1e3ef
6c0c37c
 
 
 
 
 
 
 
 
 
9e1e3ef
6c0c37c
 
9e1e3ef
6c0c37c
 
 
 
 
9e1e3ef
6c0c37c
9e1e3ef
6c0c37c
 
9e1e3ef
6c0c37c
 
 
 
 
 
 
9e1e3ef
6c0c37c
 
 
 
 
 
9e1e3ef
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import os
import json
from PIL import Image
import torch
from transformers import Qwen2_5_VLForConditionalGeneration, AutoProcessor
from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor
from qwen_vl_utils import process_vision_info

# Globals (lazy-loaded at runtime)
qwen_model = None
qwen_processor = None
ocr_model = None
ocr_processor = None


def load_prompt():
    #with open("prompts/prompt.txt", "r", encoding="utf-8") as f:
    #    return f.read()
    return os.getenv("PROMPT_TEXT", "⚠️ PROMPT_TEXT not found in secrets.")


def try_extract_json(text):
    try:
        return json.loads(text)
    except json.JSONDecodeError:
        start = text.find('{')
        if start == -1:
            return text
        brace_count = 0
        json_candidate = ''
        for i in range(start, len(text)):
            if text[i] == '{':
                brace_count += 1
            elif text[i] == '}':
                brace_count -= 1
            json_candidate += text[i]
            if brace_count == 0:
                break
        try:
            return json.loads(json_candidate)
        except json.JSONDecodeError:
            return text


def extract_all_text_pix2struct(image: Image.Image):
    global ocr_model, ocr_processor

    if ocr_model is None or ocr_processor is None:
        ocr_processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base")
        ocr_model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base")
        device = "cuda" if torch.cuda.is_available() else "cpu"
        ocr_model = ocr_model.to(device)

    inputs = ocr_processor(images=image, return_tensors="pt").to(ocr_model.device)
    predictions = ocr_model.generate(**inputs, max_new_tokens=512)
    return ocr_processor.decode(predictions[0], skip_special_tokens=True).strip()


def assign_event_gateway_names_from_ocr(json_data: dict, ocr_text: str):
    if not ocr_text or not json_data:
        return json_data

    def assign_best_guess(obj):
        if not obj.get("name") or obj["name"].strip() == "":
            obj["name"] = "(label unknown)"

    for evt in json_data.get("events", []):
        assign_best_guess(evt)

    for gw in json_data.get("gateways", []):
        assign_best_guess(gw)

    return json_data


def run_model(image: Image.Image):
    global qwen_model, qwen_processor

    if qwen_model is None or qwen_processor is None:
        qwen_model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
            "Qwen/Qwen2.5-VL-7B-Instruct",
            torch_dtype=torch.bfloat16,
            device_map="auto"
            # You can enable flash attention here if needed:
            # attn_implementation="flash_attention_2"
        )

        min_pixels = 256 * 28 * 28
        max_pixels = 1080 * 28 * 28
        qwen_processor = AutoProcessor.from_pretrained(
            "Qwen/Qwen2.5-VL-7B-Instruct",
            min_pixels=min_pixels,
            max_pixels=max_pixels
        )

    prompt = load_prompt()

    messages = [
        {
            "role": "user",
            "content": [
                {"type": "image", "image": image},
                {"type": "text", "text": prompt}
            ]
        }
    ]

    text = qwen_processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
    image_inputs, video_inputs = process_vision_info(messages)

    inputs = qwen_processor(
        text=[text],
        images=image_inputs,
        videos=video_inputs,
        padding=True,
        return_tensors="pt"
    ).to(qwen_model.device)

    generated_ids = qwen_model.generate(**inputs, max_new_tokens=5000)
    generated_ids_trimmed = [out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)]

    output_text = qwen_processor.batch_decode(
        generated_ids_trimmed,
        skip_special_tokens=True,
        clean_up_tokenization_spaces=False
    )[0]

    parsed_json = try_extract_json(output_text)

    # OCR post-processing
    ocr_text = extract_all_text_pix2struct(image)
    parsed_json = assign_event_gateway_names_from_ocr(parsed_json, ocr_text)

    return {
        "json": parsed_json,
        "raw": output_text
    }