import os import json import re from PIL import Image import torch from transformers import AutoProcessor, AutoModelForImageTextToText from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor # Set Hugging Face Token from env hf_token = os.getenv("HF_TOKEN") # Lazy-load model objects aya_model = None aya_processor = None ocr_model = None ocr_processor = None # Load prompt def load_prompt(): #with open("prompts/prompt.txt", "r", encoding="utf-8") as f: # return f.read() return os.getenv("PROMPT_TEXT", "⚠️ PROMPT_TEXT not found in secrets.") # Try extracting JSON from text def try_extract_json(text): if not text or not text.strip(): return None try: return json.loads(text) except json.JSONDecodeError: start = text.find('{') if start == -1: return None brace_count = 0 json_candidate = '' for i in range(start, len(text)): char = text[i] if char == '{': brace_count += 1 elif char == '}': brace_count -= 1 json_candidate += char if brace_count == 0: break try: return json.loads(json_candidate) except json.JSONDecodeError: return None # OCR text from Pix2Struct def extract_all_text_pix2struct(image: Image.Image): global ocr_processor, ocr_model if ocr_processor is None or ocr_model is None: ocr_processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") ocr_model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base") device = "cuda" if torch.cuda.is_available() else "cpu" ocr_model = ocr_model.to(device) inputs = ocr_processor(images=image, return_tensors="pt").to(ocr_model.device) predictions = ocr_model.generate(**inputs, max_new_tokens=512) output_text = ocr_processor.decode(predictions[0], skip_special_tokens=True) return output_text.strip() # Add fallback names if missing def assign_event_gateway_names_from_ocr(json_data: dict, ocr_text: str): if not ocr_text or not json_data: return json_data def assign_best_guess(obj): if not obj.get("name") or obj["name"].strip() == "": obj["name"] = "(label unknown)" for evt in json_data.get("events", []): assign_best_guess(evt) for gw in json_data.get("gateways", []): assign_best_guess(gw) return json_data # Main inference function def run_model(image: Image.Image): global aya_model, aya_processor if aya_model is None or aya_processor is None: model_id = "CohereForAI/aya-vision-8b" aya_processor = AutoProcessor.from_pretrained(model_id) aya_model = AutoModelForImageTextToText.from_pretrained( model_id, device_map="auto", torch_dtype=torch.float16 ) prompt = load_prompt() messages = [ { "role": "user", "content": [ {"type": "image", "image": image}, {"type": "text", "text": prompt} ] } ] inputs = aya_processor.apply_chat_template( messages, padding=True, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt" ).to(aya_model.device) gen_tokens = aya_model.generate( **inputs, max_new_tokens=5000, do_sample=True, temperature=0.3, ) output_text = aya_processor.tokenizer.decode( gen_tokens[0][inputs.input_ids.shape[1]:], skip_special_tokens=True ) parsed_json = try_extract_json(output_text) # OCR enhancement ocr_text = extract_all_text_pix2struct(image) parsed_json = assign_event_gateway_names_from_ocr(parsed_json, ocr_text) return { "json": parsed_json, "raw": output_text }