# gpt4o_pix2struct_ocr.py import os import json import base64 from PIL import Image from transformers import Pix2StructForConditionalGeneration, Pix2StructProcessor import numpy as np import openai model = "gpt-4o" # Load Pix2Struct model + processor (vision-language OCR) processor = Pix2StructProcessor.from_pretrained("google/pix2struct-textcaps-base") pix2struct_model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-base") def load_prompt(prompt_file="prompts/prompt.txt"): with open(prompt_file, "r", encoding="utf-8") as f: return f.read().strip() def try_extract_json(text): try: return json.loads(text) except json.JSONDecodeError: start = text.find('{') if start == -1: return None brace_count = 0 json_candidate = '' for i in range(start, len(text)): if text[i] == '{': brace_count += 1 elif text[i] == '}': brace_count -= 1 json_candidate += text[i] if brace_count == 0 and json_candidate.strip(): break try: return json.loads(json_candidate) except json.JSONDecodeError: return None def encode_image_base64(image: Image.Image): from io import BytesIO buffer = BytesIO() image.save(buffer, format="JPEG") return base64.b64encode(buffer.getvalue()).decode("utf-8") def extract_all_text_pix2struct(image: Image.Image): inputs = processor(images=image, return_tensors="pt") predictions = pix2struct_model.generate(**inputs, max_new_tokens=512) output_text = processor.decode(predictions[0], skip_special_tokens=True) return output_text.strip() # Optional: assign best-matching label from full extracted text using proximity (simplified version) def assign_event_gateway_names_from_ocr(image: Image.Image, json_data, ocr_text): if not ocr_text: return json_data # You could use NLP matching or regex in complex cases words = ocr_text.split() def guess_name_fallback(obj): if not obj.get("name") or obj["name"].strip() == "": obj["name"] = "(label unknown)" # fallback if matching logic isn't yet implemented for evt in json_data.get("events", []): guess_name_fallback(evt) for gw in json_data.get("gateways", []): guess_name_fallback(gw) return json_data def run_model(image: Image.Image, api_key: str = None): prompt_text = load_prompt() encoded_image = encode_image_base64(image) if not api_key: return {"json": None, "raw": "⚠️ API key is missing. Please provide your OpenAI API key."} client = openai.OpenAI(api_key=api_key) response = client.chat.completions.create( model=model, messages=[ { "role": "user", "content": [ {"type": "text", "text": prompt_text}, {"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}} ] } ], max_tokens=5000 ) output_text = response.choices[0].message.content.strip() parsed_json = try_extract_json(output_text) # Vision-language OCR assist step (Pix2Struct) full_ocr_text = extract_all_text_pix2struct(image) parsed_json = assign_event_gateway_names_from_ocr(image, parsed_json, full_ocr_text) return {"json": parsed_json, "raw": output_text}