DTM_Estimation / app.py
artelabsuper
fix for timing reason
a05fab5
raw
history blame
2.08 kB
import gradio as gr
from PIL import Image
from collections import OrderedDict
import torch
from models.model import GLPDepth
from PIL import Image
from torchvision import transforms
import matplotlib.pyplot as plt
import numpy as np
# load model
DEVICE='cpu'
def load_mde_model(path):
model = GLPDepth(max_depth=700.0, is_train=False).to(DEVICE)
model_weight = torch.load(path, map_location=torch.device('cpu'))
model_weight = model_weight['model_state_dict']
if 'module' in next(iter(model_weight.items()))[0]:
model_weight = OrderedDict((k[7:], v) for k, v in model_weight.items())
model.load_state_dict(model_weight)
model.eval()
return model
model = load_mde_model('best_model.ckpt')
preprocess = transforms.Compose([
transforms.Resize((512, 512)),
transforms.ToTensor()
])
def predict(input_image):
pil_image = Image.fromarray(input_image.astype('uint8'), 'RGB')
# transform image to torch and do preprocessing
torch_img = preprocess(pil_image).to(DEVICE).unsqueeze(0)
# model predict
with torch.no_grad():
output_patch = model(torch_img)
# transform torch to image
predicted_image = output_patch['pred_d'].squeeze().cpu().detach().numpy()
# return correct image
fig, ax = plt.subplots()
im = ax.imshow(predicted_image, cmap='jet', vmin=0, vmax=np.max(predicted_image))
plt.colorbar(im, ax=ax)
fig.canvas.draw()
data = np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8)
data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
return data #, str(predicted_image.tolist())
iface = gr.Interface(
fn=predict,
inputs=gr.Image(shape=(512,512)),
outputs=[
gr.Image(shape=(512,512)),
# gr.outputs.Textbox(label='Raw output')
],
examples=[
["demo_imgs/fake.jpg"] # use real image
],
title="DTM Estimation",
description="This demo predict a DTM using GLP Depth model. It will scale input image to 512x512 and at the end it will apply a colormap to better visualize the output."
)
iface.launch()