Spaces:
Running
Running
File size: 27,796 Bytes
85993f4 3c2c5b7 85993f4 08c1d69 85993f4 08c1d69 85993f4 08c1d69 85993f4 08c1d69 85993f4 6cb40a3 85993f4 3c2c5b7 85993f4 08c1d69 85993f4 6cb40a3 08c1d69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 |
import os
import random
import sys
from functools import partial
import numpy
import numpy as np
import rasterio
import torch
import torch.nn.functional as F
from torch import nn
from torch.autograd import Variable
#@title Dataset Code
def print_stats(stats):
print_lst = list()
for k, v in zip(stats.keys(), stats.values()):
print_lst.append("{}:{}".format(k, v))
print('\n', ", ".join(print_lst))
def get_dates(path, n=None):
"""
extracts a list of unique dates from dataset sample
:param path: to dataset sample folder
:param n: choose n random samples from all available dates
:return: list of unique dates in YYYYMMDD format
"""
files = os.listdir(path)
dates = list()
for f in files:
f = f.split(".")[0]
if len(f) == 8: # 20160101
dates.append(f)
dates = set(dates)
if n is not None:
dates = random.sample(dates, n)
dates = list(dates)
dates.sort()
return dates
def get_all_dates(path, num_max_dates):
"""
extracts a list of unique dates from dataset sample
:param path: to dataset sample folder
:param num_max_dates: choose num_max_dates random samples from all available dates
:return: list of unique dates in YYYYMMDD format
"""
files = os.listdir(path)
dates = list()
for f in files:
f = f.split(".")[0]
if len(f) == 8: # 20160101
dates.append(f)
dates = set(dates)
if num_max_dates < len(dates):
dates = random.sample(dates, num_max_dates)
dates = list(dates)
dates.sort()
return dates
def get_sliding_window(pos, x_annual_time_series, win_size):
# x_annual_time_series to sliding window
sw_stop = pos + 1
sw_start = sw_stop - win_size
if sw_start < 0:
# batch, channels, time_series, H, W = x_annual_time_series.shape
channels, time_series, H, W = x_annual_time_series.shape
# x_win = torch.zeros(batch, channels, win_size, H, W)
x_win = torch.zeros(channels, win_size, H, W)
# x_win[:, :, -sw_stop:, :, :] = x_annual_time_series[:, :, :sw_stop, :, :]
x_win[:, -sw_stop:, :, :] = x_annual_time_series[:, :sw_stop, :, :]
else:
# x_annual[batch, channels, time_series, H, W]
# x_win = x_annual_time_series[:, :, sw_start:sw_stop, :, :]
x_win = x_annual_time_series[:, sw_start:sw_stop, :, :]
return x_win
def read_classes(csv):
with open(csv, 'r') as f:
classes = f.readlines()
ids = list()
names = list()
reliable_start_grow = list()
reliable_end_grow = list()
unreliable_start_grow = list()
unreliable_end_grow = list()
for row in classes:
row = row.replace("\n", "")
if '|' in row:
cls_info = row.split('|')
# we can have multiple id
id_info = cls_info[0].split(',')
id_info = [int(x) for x in id_info]
# ids.append(int(cls_info[0]))
ids.append(id_info)
names.append(cls_info[1])
if len(cls_info) > 2:
reliable_start_grow.append(cls_info[2])
reliable_end_grow.append(cls_info[3])
if len(cls_info) > 4:
unreliable_start_grow.append(cls_info[2])
unreliable_end_grow.append(cls_info[3])
return ids, names, reliable_start_grow, reliable_end_grow, \
unreliable_start_grow, unreliable_end_grow
def get_patch_id(samples, idx_img):
_path = samples[idx_img]
if _path.endswith(os.sep):
_path = _path[:-1]
_id = os.path.basename(_path)
return _id, _path
class SentinelDailyAnnualDatasetNoLabel(torch.utils.data.Dataset):
'''
If the first label is for example "1|unknown" then this will be replaced with a 0 (zero).
If you want to ignore other labels, then remove them from the classes.txt file and
this class will assigne label 0 (zero).
'''
def __init__(self, root_dirs, years, classes_path, max_seq_length, win_size, tileids=None):
self.max_seq_length = max_seq_length
self.win_size = win_size
# labels read from groudtruth files (y.tif)
# useful field to check the available labels
self.unique_labels = np.array([], dtype=float)
self.reliable_start_grow = list()
self.reliable_stop_grow = list()
self.unreliable_start_grow = list()
self.unreliable_stop_grow = list()
cls_info = read_classes(classes_path)
self.classids = cls_info[0]
self.classes = cls_info[1]
if len(cls_info[2]) > 0:
self.reliable_start_grow = cls_info[2]
self.reliable_stop_grow = cls_info[3]
if len(cls_info[4]) > 0:
self.unreliable_start_grow = cls_info[4]
self.unreliable_stop_grow = cls_info[5]
if type(years) is not list:
years = [years]
self.data_dirs = years
if type(root_dirs) is not list:
root_dirs = [root_dirs]
self.root_dirs = [r.rstrip("/") for r in root_dirs]
self.name = ""
self.samples = list()
self.ndates = list()
for root_dir in self.root_dirs:
print("Reading dataset info:", root_dir)
self.name += os.path.basename(root_dir) + '_'
for d in self.data_dirs:
if not os.path.isdir(os.path.join(root_dir, d)):
sys.exit('The directory ' + os.path.join(root_dir, d) + " does not exist!")
stats = dict(
rejected_nopath=0,
rejected_length=0,
total_samples=0)
dirs = []
if tileids is None:
# files = os.listdir(self.data_dirs)
for d in self.data_dirs:
dirs_name = os.listdir(os.path.join(root_dir, d))
dirs_path = [os.path.join(root_dir, d, f) for f in dirs_name]
dirs.extend(dirs_path)
else:
# tileids e.g. "tileids/train_fold0.tileids" path of line separated tileids specifying
# with open(os.path.join(root_dir, tileids), 'r') as f:
# files = [el.replace("\n", "") for el in f.readlines()]
for d in self.data_dirs:
dirs_path = [os.path.join(root_dir, d, f) for f in tileids]
dirs.extend(dirs_path)
for path in dirs:
if not os.path.exists(path):
stats["rejected_nopath"] += 1
continue
ndates = len(get_dates(path))
stats["total_samples"] += 1
self.samples.append(path)
self.ndates.append(ndates)
print_stats(stats)
def __len__(self):
return len(self.samples)
def __getitem__(self, idx_img):
patch_id, path = get_patch_id(self.samples, idx_img)
dates = get_all_dates(path, self.max_seq_length)
# print("idx_img:", idx_img)
# print("self.samples:", self.samples)
# print("path:", path)
# print("self.max_seq_length:", self.max_seq_length)
# print(dates)
x_annual = list()
for date in dates:
x10_img, profile = read(os.path.join(path, date + ".tif"))
x_annual.append(x10_img)
padding_size = max(0, self.max_seq_length - len(dates))
for i in range(padding_size):
# y_dailies.append(np.zeros_like(y_dailies[0]))
x_annual.append(np.zeros_like(x_annual[0]))
dates.append(dates[-1][:4] + '1231')
# dates = np.pad(dates, (0, padding_size - 1), mode='edge') # padding with mirror
x_annual = np.array(x_annual) * 1e-4
x_annual = torch.from_numpy(x_annual)
# permute channels with time_series (t x c x h x w) -> (c x t x h x w)
x_annual = x_annual.permute(1, 0, 2, 3)
x_annual = x_annual.float()
# create sliding windows from x_annual
x_dailies = list()
for i in range(len(dates)):
x_win = get_sliding_window(i, x_annual, self.win_size)
x_dailies.append(x_win)
x_dailies = torch.stack(x_dailies)
# return x_dailies, y_annual, y_dailies, dates, patch_id
return x_dailies, dates, path
#@title Models code
# annual model
class SimpleNN(nn.Module):
def __init__(self, opt):
super(SimpleNN, self).__init__()
self.num_classes = opt.n_classes
self.conv1 = nn.Conv3d(
opt.sample_duration,
# opt.sample_channels,
64,
kernel_size=(7, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(3, 1, 1), # orig: (3, 3, 3)
bias=False)
self.conv2 = nn.Conv3d(
64,
128,
# kernel_size=(opt.sample_channels-opt.n_classes+1, 3, 3), # orig: 7
kernel_size=(3, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(1, 1, 1), # orig: (3, 3, 3)
bias=False)
self.conv3 = nn.Conv3d(
128,
1,
# kernel_size=(opt.sample_channels-opt.n_classes+1, 3, 3), # orig: 7
kernel_size=(3, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(1, 1, 1), # orig: (3, 3, 3)
bias=False)
@staticmethod
def upsample3d(x, d, h, w):
return F.interpolate(x, size=(d, h, w), mode='trilinear', align_corners=True)
def forward(self, x):
_, _, _, h, w = x.shape
out = torch.relu(self.conv1(x))
out = self.upsample3d(out, self.num_classes, h, w)
out = torch.relu(self.conv2(out))
out = self.conv3(out)
out = out.squeeze(1)
return out, out
# daily
def get_fine_tuning_parameters(model, ft_begin_index):
if ft_begin_index == 0:
return model.parameters()
ft_module_names = []
for i in range(ft_begin_index, 5):
ft_module_names.append('layer{}'.format(i))
ft_module_names.append('fc')
parameters = []
for k, v in model.named_parameters():
for ft_module in ft_module_names:
if ft_module in k:
parameters.append({'params': v})
break
else:
parameters.append({'params': v, 'lr': 0.0})
return parameters
def downsample_basic_block(x, planes, stride):
out = F.avg_pool3d(x, kernel_size=1, stride=stride)
zero_pads = torch.Tensor(
out.size(0), planes - out.size(1), out.size(2), out.size(3),
out.size(4)).zero_()
if isinstance(out.data, torch.cuda.FloatTensor):
zero_pads = zero_pads.cuda()
out = Variable(torch.cat([out.data, zero_pads], dim=1))
return out
class Bottleneck(nn.Module):
expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv3d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm3d(planes)
self.conv2 = nn.Conv3d(
planes, planes, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn2 = nn.BatchNorm3d(planes)
self.conv3 = nn.Conv3d(planes, planes * 4, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm3d(planes * 4)
self.relu = nn.ReLU(inplace=True)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self,
block,
layers,
opt,
# sample_size, # Height and width of inputs es. 112 x 112
sample_duration, # Temporal duration of inputs, es. 16
# shortcut_type='B',
# num_classes=400
):
super(ResNet, self).__init__()
self.inplanes = 64
kernel0 = min(7, sample_duration)
padding0 = int(kernel0 / 2)
self.conv1 = nn.Conv3d(
# opt.sample_duration,
opt.sample_channels,
64,
kernel_size=(kernel0, 3, 3), # orig: 7
stride=(1, 1, 1), # orig: (1, 2, 2)
padding=(padding0, 1, 1), # orig: (3, 3, 3)
bias=False)
self.bn1 = nn.BatchNorm3d(64)
self.relu = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool3d(kernel_size=(3, 3, 3), stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0], opt.resnet_shortcut)
self.layer2 = self._make_layer(block, 128, layers[1], opt.resnet_shortcut, stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], opt.resnet_shortcut, stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], opt.resnet_shortcut, stride=2)
# last_duration = int(math.ceil(sample_duration / 16))
# last_size = int(math.ceil(sample_size / 32))
# self.avgpool = nn.AvgPool3d(
# (last_duration, last_size, last_size), stride=1)
# self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules():
if isinstance(m, nn.Conv3d):
m.weight = nn.init.kaiming_normal_(m.weight, mode='fan_out')
elif isinstance(m, nn.BatchNorm3d):
m.weight.data.fill_(1)
m.bias.data.zero_()
def _make_layer(self, block, planes, blocks, shortcut_type, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
if shortcut_type == 'A':
downsample = partial(
downsample_basic_block,
planes=planes * block.expansion,
stride=stride)
else:
downsample = nn.Sequential(
nn.Conv3d(
self.inplanes,
planes * block.expansion,
kernel_size=1,
stride=stride,
bias=False), nn.BatchNorm3d(planes * block.expansion))
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def forward(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
low_level_feat1 = x
x = self.layer1(x)
low_level_feat2 = x
x = self.layer2(x)
low_level_feat3 = x
x = self.layer3(x)
low_level_feat4 = x
x = self.layer4(x)
low_level_feat5 = x
return [low_level_feat1, low_level_feat2, low_level_feat3, low_level_feat4, low_level_feat5]
# x = self.avgpool(x)
# x = x.view(x.size(0), -1)
# x = self.fc(x)
# return x
def resnet50(opt, sample_duration):
"""Constructs a ResNet-50 model.
"""
model = ResNet(Bottleneck, [3, 4, 6, 3], opt, sample_duration)
return model
class FPN(nn.Module):
def __init__(self, opt, first_batch, sample_duration):
super(FPN, self).__init__()
# self.first_run = True
self.in_planes = 64
self.num_classes = opt.n_classes
model = resnet50(opt, sample_duration)
self.back_bone = nn.DataParallel(model, device_ids=None)
# if opt.pretrain_path:
# print('loading pretrained model {}'.format(opt.pretrain_path))
# pretrain = torch.load(opt.pretrain_path)
# assert opt.arch == pretrain['arch']
#
# model.load_state_dict(pretrain['state_dict'])
#
# if opt.model == 'densenet':
# model.module.classifier = nn.Linear(
# model.module.classifier.in_features, opt.n_finetune_classes)
# model.module.classifier = model.module.classifier.cuda()
# else:
# model.module.fc = nn.Linear(model.module.fc.in_features,
# opt.n_finetune_classes)
# model.module.fc = model.module.fc.cuda()
#
# parameters = get_fine_tuning_parameters(model, opt.ft_begin_index)
# self.back_bone, parameters = generate_model(opt, sample_duration)
# Top layer
self.toplayer = None # nn.Conv3d(512, 256, kernel_size=1, stride=1, padding=0) # Reduce channels
# Lateral layers
self.latlayer1 = None # nn.Conv3d(256, 256, kernel_size=1, stride=1, padding=0
self.latlayer2 = None # nn.Conv3d(128, 256, kernel_size=1, stride=1, padding=0)
self.latlayer3 = None # nn.Conv3d(64, 256, kernel_size=1, stride=1, padding=0)
# Addendum layers to reduce channels before sum
self.sumlayer1 = None
self.sumlayer2 = None
self.sumlayer3 = None
# Semantic branch
self.conv2_3d_p5 = None
self.conv2_3d_p4 = None
self.conv2_3d_p3 = None
self.conv2_3d_p2 = None
self.iam_joking(first_batch, not opt.no_cuda)
self.semantic_branch_2d = nn.Conv2d(256, 128, kernel_size=3, stride=1, padding=1)
self.conv2_2d = nn.Conv2d(256, 256, kernel_size=3, stride=1, padding=1)
# self.conv3 = nn.Conv2d(128, self.num_classes, kernel_size=1, stride=1, padding=0)
self.conv3 = nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0)
# opt.sample_duration is the number of samples taken from the time series
self.conv4out = nn.Conv2d(64, opt.sample_duration, kernel_size=3, stride=1, padding=1)
self.conv5out = nn.Conv2d(opt.sample_duration, self.num_classes, kernel_size=3, stride=1, padding=1)
# num_groups, num_channels
self.gn1 = nn.GroupNorm(128, 128)
self.gn2 = nn.GroupNorm(256, 256)
def iam_joking(self, x, use_cuda):
low_level_features = self.back_bone(x)
c1 = low_level_features[0]
c2 = low_level_features[1]
c3 = low_level_features[2]
c4 = low_level_features[3]
c5 = low_level_features[4]
# Top layer
self.toplayer = nn.Conv3d(c5.size()[1], c5.size()[1], kernel_size=1, stride=1, padding=0) # Reduce channels
# Lateral layers
self.latlayer1 = nn.Conv3d(c4.size()[1], c4.size()[1], kernel_size=1, stride=1, padding=0)
self.latlayer2 = nn.Conv3d(c3.size()[1], c3.size()[1], kernel_size=1, stride=1, padding=0)
self.latlayer3 = nn.Conv3d(c2.size()[1], c2.size()[1], kernel_size=1, stride=1, padding=0)
# Addendum layers to reduce channels
self.sumlayer1 = nn.Conv3d(c5.size()[1], c4.size()[1], kernel_size=1, stride=1, padding=0) # Reduce channels
self.sumlayer2 = nn.Conv3d(c4.size()[1], c3.size()[1], kernel_size=1, stride=1, padding=0)
self.sumlayer3 = nn.Conv3d(c3.size()[1], c2.size()[1], kernel_size=1, stride=1, padding=0)
if use_cuda:
self.toplayer = self.toplayer.cuda()
self.latlayer1 = self.latlayer1.cuda()
self.latlayer2 = self.latlayer2.cuda()
self.latlayer3 = self.latlayer3.cuda()
self.sumlayer1 = self.sumlayer1.cuda()
self.sumlayer2 = self.sumlayer2.cuda()
self.sumlayer3 = self.sumlayer3.cuda()
# Top-down
p5 = self.toplayer(c5)
p4 = self._upsample_add(self.sumlayer1(p5), self.latlayer1(c4))
p3 = self._upsample_add(self.sumlayer2(p4), self.latlayer2(c3))
p2 = self._upsample_add(self.sumlayer3(p3), self.latlayer3(c2))
# calculate the sizes so that dimension c becomes 1
self.conv2_3d_p5 = nn.Conv3d(p5.size()[1], 256, kernel_size=(p5.size()[2] + 2, 3, 3), stride=1, padding=1)
self.conv2_3d_p4 = nn.Conv3d(p4.size()[1], 256, kernel_size=(p4.size()[2] + 2, 3, 3), stride=1, padding=1)
self.conv2_3d_p3 = nn.Conv3d(p3.size()[1], 128, kernel_size=(p3.size()[2] + 2, 3, 3), stride=1, padding=1)
self.conv2_3d_p2 = nn.Conv3d(p2.size()[1], 128, kernel_size=(p2.size()[2] + 2, 3, 3), stride=1, padding=1)
def _upsample3d(self, x, d, h, w):
return F.interpolate(x, size=(d, h, w), mode='trilinear', align_corners=True)
def _upsample2d(self, x, h, w):
return F.interpolate(x, size=(h, w), mode='bilinear', align_corners=True)
def _make_layer(self, Bottleneck, planes, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(Bottleneck(self.in_planes, planes, stride))
self.in_planes = planes * Bottleneck.expansion
return nn.Sequential(*layers)
def _upsample_add(self, x, y):
'''Upsample and add two feature maps.
Args:
x: (Variable) top feature map to be upsampled.
y: (Variable) lateral feature map.
Returns:
(Variable) added feature map.
Note in PyTorch, when input size is odd, the upsampled feature map
with `F.upsample(..., scale_factor=2, mode='nearest')`
maybe not equal to the lateral feature map size.
e.g.
original input size: [N,_,15,15] ->
conv2d feature map size: [N,_,8,8] ->
upsampled feature map size: [N,_,16,16]
So we choose bilinear upsample which supports arbitrary output sizes.
'''
_, _, D, H, W = y.size()
return F.interpolate(x, size=(D, H, W), mode='trilinear', align_corners=True) + y
def forward(self, x):
# Bottom-up using backbone
low_level_features = self.back_bone(x)
# c1 = low_level_features[0]
c2 = low_level_features[1]
c3 = low_level_features[2]
c4 = low_level_features[3]
c5 = low_level_features[4]
# Top-down
p5 = self.toplayer(c5)
p4 = self._upsample_add(
torch.relu(self.sumlayer1(p5)), torch.relu(self.latlayer1(c4))) # p5 interpolation to the size of c4
p3 = self._upsample_add(
torch.relu(self.sumlayer2(p4)), torch.relu(self.latlayer2(c3)))
p2 = self._upsample_add(
torch.relu(self.sumlayer3(p3)), torch.relu(self.latlayer3(c2)))
# Smooth
# p4 = F.relu(self.smooth1(p4))
# p3 = F.relu(self.smooth2(p3))
# p2 = F.relu(self.smooth3(p2))
# Semantic
_, _, _, h, w = p2.size()
# 256->256
s5 = self.conv2_3d_p5(p5)
s5 = torch.squeeze(s5, 2) # squeeze only dim 2 to avoid to remove the batch dimension
s5 = self._upsample2d(torch.relu(self.gn2(s5)), h, w)
# 256->256 [32, 256, 24, 24]
s5 = self._upsample2d(torch.relu(self.gn2(self.conv2_2d(s5))), h, w)
# 256->128 [32, 128, 24, 24]
s5 = self._upsample2d(torch.relu(self.gn1(self.semantic_branch_2d(s5))), h, w)
# 256->256 p4:[32, 256, 4, 6, 6] -> s4:[32, 256, 1, 6, 6]
s4 = self.conv2_3d_p4(p4)
s4 = torch.squeeze(s4, 2) # s4:[32, 256, 6, 6]
s4 = self._upsample2d(torch.relu(self.gn2(s4)), h, w) # s4:[32, 256, 24, 24]
# 256->128 s4:[32, 128, 24, 24]
s4 = self._upsample2d(torch.relu(self.gn1(self.semantic_branch_2d(s4))), h, w)
# 256->128
s3 = self.conv2_3d_p3(p3)
s3 = torch.squeeze(s3, 2)
s3 = self._upsample2d(torch.relu(self.gn1(s3)), h, w)
s2 = self.conv2_3d_p2(p2)
s2 = torch.squeeze(s2, 2)
s2 = self._upsample2d(torch.relu(self.gn1(s2)), h, w)
out = self._upsample2d(self.conv3(s2 + s3 + s4 + s5), 2 * h, 2 * w)
# introducing MSELoss on NDVI signal
out_cai = torch.sigmoid(self.conv4out(out)) # for Class Activation Interval
out_cls = self.conv5out(out_cai) # for Classification
return out_cai, out_cls
def ids_to_labels(dataloader, pred_labels):
new = np.zeros(pred_labels.shape, int)
for cl, i in zip(dataloader.dataset.classids, range(len(dataloader.dataset.classids))):
if type(cl) is list:
new[pred_labels == i] = cl[0]
# for c in cl:
# new[pred_labels == c] = i
else:
new[pred_labels == i] = cl
return new
def resume(path, model, optimizer):
if torch.cuda.is_available():
snapshot = torch.load(path)
else:
snapshot = torch.load(path, map_location="cpu")
print("Loaded snapshot from", path)
model_state = snapshot.pop('model_state', snapshot)
optimizer_state = snapshot.pop('optimizer_state', None)
if model is not None and model_state is not None:
print("loading model...")
model.load_state_dict(model_state)
if optimizer is not None and optimizer_state is not None:
optimizer.load_state_dict(optimizer_state)
return snapshot
def read(file):
with rasterio.open(file) as src:
return src.read(), src.profile
#@title Setup Parameters
opt = type('test', (), {})()
opt.gpu_id = ''
opt.no_cuda = True
opt.n_classes = 8
opt.model_depth = 50
opt.batch_size = 1
opt.sample_duration = 71
opt.sample_channels = 9
opt.win_size = 5
opt.model = 'resnet'
opt.resnet_shortcut = 'B'
# opt.n_epochs = 20
# opt.learning_rate = 0.01
# opt.loss = 'ce'
# opt.optimizer = 'sgd'
# opt.export_only
# opt.test_tile = 'test_small.tileids'
opt.result_path = 'results'
input_data_folder = 'demo_data/lombardia' #@param {type:"string"}
opt.root_path = [input_data_folder]
opt.years = ['2019']
opt.classes_path = 'demo_data/classes-newmapping.txt'
opt.resume_path = 'demo_data'
opt.pretrain_path = ''
opt.workers = 1
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpu_id
if opt.no_cuda:
os.environ['CUDA_VISIBLE_DEVICES'] = ""
classes_color_map = np.array([[255/255.0, 255/255.0, 255/255.0],
[150/255.0, 150/255.0, 150/255.0], # Gray - 1 - Unknow cropland
[255/255.0, 0, 0], # Red - 2 - Other cereals
[161/255.0, 0, 0],
[0., 255/255.0, 0], # Green - 4 - Woods and other tree crops
[255/255.0, 240/255.0, 0],
[130/255.0, 120/255.0, 240/255.0],
[255/255.0, 136/255.0, 0], # Orange - 7 - Forage
[250, 190, 190],
[255/255.0, 255/255.0, 0], # Yellow - 9 - Corn
[0, 250, 154],
[64, 224, 208],
[0/255.0, 255/255.0, 255/255.0], # Turchese - 12 - Rice
[0.58823529, 0.39215686, 0.39215686],
[139/255, 35/255, 35/255],
[139/255, 35/255, 35/255],
[139/255, 35/255, 35/255],
[0, 0, 0], # Black - 17 - No Arable land
])
color_labels = [classes_color_map[0], classes_color_map[1], classes_color_map[2], classes_color_map[4],
classes_color_map[7], classes_color_map[9], classes_color_map[12], classes_color_map[17]]
labels_map = ['Unknown', 'Unknown cropland', 'Other cereals', 'Woods and other tree crops', 'Forage', 'Corn', 'Rice',
'No arable land']
|