Spaces:
Sleeping
Sleeping
ignaziogallo
commited on
Commit
·
b7e5937
1
Parent(s):
6cb40a3
modified markdown text
Browse files
app.py
CHANGED
@@ -38,14 +38,26 @@ if not hasattr(st, 'daily_model'):
|
|
38 |
st.daily_model = st.daily_model.eval()
|
39 |
st.annual_model = st.annual_model.eval()
|
40 |
|
41 |
-
|
42 |
# Load Model
|
43 |
# @title Load pretrained weights
|
44 |
|
45 |
|
46 |
-
|
47 |
-
st.
|
48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
file_uploaded = st.file_uploader(
|
51 |
"Upload",
|
@@ -166,10 +178,8 @@ if st.paths is not None:
|
|
166 |
target = np.squeeze(target)
|
167 |
target = [classes_color_map[p] for p in target]
|
168 |
|
169 |
-
|
170 |
fig, ax = plt.subplots()
|
171 |
ax.imshow(target)
|
172 |
-
|
173 |
|
174 |
markdown_legend = ''
|
175 |
for c, l in zip(color_labels, labels_map):
|
@@ -181,3 +191,13 @@ if st.paths is not None:
|
|
181 |
st.pyplot(fig)
|
182 |
with col2:
|
183 |
st.markdown(markdown_legend, unsafe_allow_html=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
st.daily_model = st.daily_model.eval()
|
39 |
st.annual_model = st.annual_model.eval()
|
40 |
|
|
|
41 |
# Load Model
|
42 |
# @title Load pretrained weights
|
43 |
|
44 |
|
45 |
+
st.title('In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series')
|
46 |
+
st.markdown(""" Demo App for the model presented in the paper:
|
47 |
+
```
|
48 |
+
@article{gallo2022in_season,
|
49 |
+
title = {In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series},
|
50 |
+
journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
|
51 |
+
volume = {195},
|
52 |
+
pages = {335-352},
|
53 |
+
year = {2023},
|
54 |
+
issn = {0924-2716},
|
55 |
+
doi = {https://doi.org/10.1016/j.isprsjprs.2022.12.005},
|
56 |
+
url = {https://www.sciencedirect.com/science/article/pii/S0924271622003203},
|
57 |
+
author = {Ignazio Gallo and Luigi Ranghetti and Nicola Landro and Riccardo {La Grassa} and Mirco Boschetti},
|
58 |
+
}
|
59 |
+
```
|
60 |
+
""")
|
61 |
|
62 |
file_uploaded = st.file_uploader(
|
63 |
"Upload",
|
|
|
178 |
target = np.squeeze(target)
|
179 |
target = [classes_color_map[p] for p in target]
|
180 |
|
|
|
181 |
fig, ax = plt.subplots()
|
182 |
ax.imshow(target)
|
|
|
183 |
|
184 |
markdown_legend = ''
|
185 |
for c, l in zip(color_labels, labels_map):
|
|
|
191 |
st.pyplot(fig)
|
192 |
with col2:
|
193 |
st.markdown(markdown_legend, unsafe_allow_html=True)
|
194 |
+
|
195 |
+
st.markdown("""
|
196 |
+
## Lombardia Dataset
|
197 |
+
You can download other patches from the original dataset created and published on
|
198 |
+
[Kaggle](https://www.kaggle.com/datasets/ignazio/sentinel2-crop-mapping) and used in our paper.
|
199 |
+
|
200 |
+
## How to build an input file for the Demo
|
201 |
+
Using a daily FPN and giving a zip that contains 30 tiff with 7 channels, correctly named you can reach prediction of
|
202 |
+
crop mapping og the area...
|
203 |
+
""")
|