ignaziogallo commited on
Commit
b7e5937
·
1 Parent(s): 6cb40a3

modified markdown text

Browse files
Files changed (1) hide show
  1. app.py +26 -6
app.py CHANGED
@@ -38,14 +38,26 @@ if not hasattr(st, 'daily_model'):
38
  st.daily_model = st.daily_model.eval()
39
  st.annual_model = st.annual_model.eval()
40
 
41
-
42
  # Load Model
43
  # @title Load pretrained weights
44
 
45
 
46
-
47
- st.title('Lombardia Sentinel 2 daily Crop Mapping')
48
- st.markdown('Using a daily FPN and giving a zip that contains 30 tiff with 7 channels, correctly named you can reach prediction of crop mapping og the area.')
 
 
 
 
 
 
 
 
 
 
 
 
 
49
 
50
  file_uploaded = st.file_uploader(
51
  "Upload",
@@ -166,10 +178,8 @@ if st.paths is not None:
166
  target = np.squeeze(target)
167
  target = [classes_color_map[p] for p in target]
168
 
169
-
170
  fig, ax = plt.subplots()
171
  ax.imshow(target)
172
-
173
 
174
  markdown_legend = ''
175
  for c, l in zip(color_labels, labels_map):
@@ -181,3 +191,13 @@ if st.paths is not None:
181
  st.pyplot(fig)
182
  with col2:
183
  st.markdown(markdown_legend, unsafe_allow_html=True)
 
 
 
 
 
 
 
 
 
 
 
38
  st.daily_model = st.daily_model.eval()
39
  st.annual_model = st.annual_model.eval()
40
 
 
41
  # Load Model
42
  # @title Load pretrained weights
43
 
44
 
45
+ st.title('In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series')
46
+ st.markdown(""" Demo App for the model presented in the paper:
47
+ ```
48
+ @article{gallo2022in_season,
49
+ title = {In-season and dynamic crop mapping using 3D convolution neural networks and sentinel-2 time series},
50
+ journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
51
+ volume = {195},
52
+ pages = {335-352},
53
+ year = {2023},
54
+ issn = {0924-2716},
55
+ doi = {https://doi.org/10.1016/j.isprsjprs.2022.12.005},
56
+ url = {https://www.sciencedirect.com/science/article/pii/S0924271622003203},
57
+ author = {Ignazio Gallo and Luigi Ranghetti and Nicola Landro and Riccardo {La Grassa} and Mirco Boschetti},
58
+ }
59
+ ```
60
+ """)
61
 
62
  file_uploaded = st.file_uploader(
63
  "Upload",
 
178
  target = np.squeeze(target)
179
  target = [classes_color_map[p] for p in target]
180
 
 
181
  fig, ax = plt.subplots()
182
  ax.imshow(target)
 
183
 
184
  markdown_legend = ''
185
  for c, l in zip(color_labels, labels_map):
 
191
  st.pyplot(fig)
192
  with col2:
193
  st.markdown(markdown_legend, unsafe_allow_html=True)
194
+
195
+ st.markdown("""
196
+ ## Lombardia Dataset
197
+ You can download other patches from the original dataset created and published on
198
+ [Kaggle](https://www.kaggle.com/datasets/ignazio/sentinel2-crop-mapping) and used in our paper.
199
+
200
+ ## How to build an input file for the Demo
201
+ Using a daily FPN and giving a zip that contains 30 tiff with 7 channels, correctly named you can reach prediction of
202
+ crop mapping og the area...
203
+ """)