PelosiFilippo commited on
Commit
ea1509a
·
1 Parent(s): 9b4e7cb

Changed model loading asynchronously

Browse files
Files changed (1) hide show
  1. app.py +17 -9
app.py CHANGED
@@ -1,21 +1,29 @@
1
  import gradio as gr
2
  from PIL import Image
3
 
 
 
4
  import torch
5
  import numpy as np
6
  from models.network_swinir import SwinIR as net
7
 
8
  # model load
9
- param_key_g = 'params_ema'
10
- device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
 
 
 
 
 
 
 
 
 
 
 
 
11
 
12
- super_res_model = net(upscale=4, in_chans=3, img_size=64, window_size=8,
13
- img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
14
- num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
15
- mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
16
- super_res_pretrained_model = torch.load("model_zoo/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_PSNR.pth")
17
- super_res_model.load_state_dict(super_res_pretrained_model[param_key_g] if param_key_g in super_res_pretrained_model.keys() else super_res_pretrained_model, strict=True)
18
- super_res_model.eval()
19
 
20
  def predict(input_img):
21
  out = None
 
1
  import gradio as gr
2
  from PIL import Image
3
 
4
+ import _thread
5
+ import time
6
  import torch
7
  import numpy as np
8
  from models.network_swinir import SwinIR as net
9
 
10
  # model load
11
+ def load_model():
12
+ global super_res_model
13
+ global device
14
+
15
+ param_key_g = 'params_ema'
16
+ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
17
+
18
+ super_res_model = net(upscale=4, in_chans=3, img_size=64, window_size=8,
19
+ img_range=1., depths=[6, 6, 6, 6, 6, 6, 6, 6, 6], embed_dim=240,
20
+ num_heads=[8, 8, 8, 8, 8, 8, 8, 8, 8],
21
+ mlp_ratio=2, upsampler='nearest+conv', resi_connection='3conv')
22
+ super_res_pretrained_model = torch.load("model_zoo/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR-L_x4_PSNR.pth")
23
+ super_res_model.load_state_dict(super_res_pretrained_model[param_key_g] if param_key_g in super_res_pretrained_model.keys() else super_res_pretrained_model, strict=True)
24
+ super_res_model.eval()
25
 
26
+ _thread.start_new_thread(load_model, tuple())
 
 
 
 
 
 
27
 
28
  def predict(input_img):
29
  out = None