Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,046 Bytes
b96e750 f5b749d b96e750 f5b749d b96e750 4e97955 f5b749d b96e750 f5b749d 5cb345f f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 4e97955 f5b749d b96e750 f5b749d 5e24eef b96e750 f5b749d b96e750 5fa1afb b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d 07e6e48 b96e750 b311ba6 b96e750 07e6e48 b96e750 b311ba6 b96e750 d0bd81d b311ba6 d0bd81d b96e750 d0bd81d b96e750 07e6e48 f5b749d 07e6e48 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d 5e24eef b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d b96e750 f5b749d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 |
import torch
import librosa
import torchaudio
import random
import json
from muq import MuQMuLan, MuQ
from mutagen.mp3 import MP3
import os
import numpy as np
from huggingface_hub import hf_hub_download
from hydra.utils import instantiate
from omegaconf import OmegaConf
from safetensors.torch import load_file
from diffrhythm.model import DiT, CFM
def vae_sample(mean, scale):
stdev = torch.nn.functional.softplus(scale) + 1e-4
var = stdev * stdev
logvar = torch.log(var)
latents = torch.randn_like(mean) * stdev + mean
kl = (mean * mean + var - logvar - 1).sum(1).mean()
return latents, kl
def normalize_audio(y, target_dbfs=0):
max_amplitude = torch.max(torch.abs(y))
target_amplitude = 10.0**(target_dbfs / 20.0)
scale_factor = target_amplitude / max_amplitude
normalized_audio = y * scale_factor
return normalized_audio
def set_audio_channels(audio, target_channels):
if target_channels == 1:
# Convert to mono
audio = audio.mean(1, keepdim=True)
elif target_channels == 2:
# Convert to stereo
if audio.shape[1] == 1:
audio = audio.repeat(1, 2, 1)
elif audio.shape[1] > 2:
audio = audio[:, :2, :]
return audio
class PadCrop(torch.nn.Module):
def __init__(self, n_samples, randomize=True):
super().__init__()
self.n_samples = n_samples
self.randomize = randomize
def __call__(self, signal):
n, s = signal.shape
start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
end = start + self.n_samples
output = signal.new_zeros([n, self.n_samples])
output[:, :min(s, self.n_samples)] = signal[:, start:end]
return output
def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device):
audio = audio.to(device)
if in_sr != target_sr:
resample_tf = torchaudio.transforms.Resample(in_sr, target_sr).to(device)
audio = resample_tf(audio)
if target_length is None:
target_length = audio.shape[-1]
audio = PadCrop(target_length, randomize=False)(audio)
# Add batch dimension
if audio.dim() == 1:
audio = audio.unsqueeze(0).unsqueeze(0)
elif audio.dim() == 2:
audio = audio.unsqueeze(0)
audio = set_audio_channels(audio, target_channels)
return audio
def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
downsampling_ratio = 2048
io_channels = 2
if not chunked:
return vae_model.decode_export(latents)
else:
# chunked decoding
hop_size = chunk_size - overlap
total_size = latents.shape[2]
batch_size = latents.shape[0]
chunks = []
i = 0
for i in range(0, total_size - chunk_size + 1, hop_size):
chunk = latents[:, :, i : i + chunk_size]
chunks.append(chunk)
if i + chunk_size != total_size:
# Final chunk
chunk = latents[:, :, -chunk_size:]
chunks.append(chunk)
chunks = torch.stack(chunks)
num_chunks = chunks.shape[0]
# samples_per_latent is just the downsampling ratio
samples_per_latent = downsampling_ratio
# Create an empty waveform, we will populate it with chunks as decode them
y_size = total_size * samples_per_latent
y_final = torch.zeros((batch_size, io_channels, y_size)).to(latents.device)
for i in range(num_chunks):
x_chunk = chunks[i, :]
# decode the chunk
y_chunk = vae_model.decode_export(x_chunk)
# figure out where to put the audio along the time domain
if i == num_chunks - 1:
# final chunk always goes at the end
t_end = y_size
t_start = t_end - y_chunk.shape[2]
else:
t_start = i * hop_size * samples_per_latent
t_end = t_start + chunk_size * samples_per_latent
# remove the edges of the overlaps
ol = (overlap // 2) * samples_per_latent
chunk_start = 0
chunk_end = y_chunk.shape[2]
if i > 0:
# no overlap for the start of the first chunk
t_start += ol
chunk_start += ol
if i < num_chunks - 1:
# no overlap for the end of the last chunk
t_end -= ol
chunk_end -= ol
# paste the chunked audio into our y_final output audio
y_final[:, :, t_start:t_end] = y_chunk[:, :, chunk_start:chunk_end]
return y_final
def encode_audio(audio, vae_model, chunked=False, overlap=32, chunk_size=128):
downsampling_ratio = 2048
latent_dim = 128
if not chunked:
# default behavior. Encode the entire audio in parallel
return vae_model.encode_export(audio)
else:
# CHUNKED ENCODING
# samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
samples_per_latent = downsampling_ratio
total_size = audio.shape[2] # in samples
batch_size = audio.shape[0]
chunk_size *= samples_per_latent # converting metric in latents to samples
overlap *= samples_per_latent # converting metric in latents to samples
hop_size = chunk_size - overlap
chunks = []
for i in range(0, total_size - chunk_size + 1, hop_size):
chunk = audio[:,:,i:i+chunk_size]
chunks.append(chunk)
if i+chunk_size != total_size:
# Final chunk
chunk = audio[:,:,-chunk_size:]
chunks.append(chunk)
chunks = torch.stack(chunks)
num_chunks = chunks.shape[0]
# Note: y_size might be a different value from the latent length used in diffusion training
# because we can encode audio of varying lengths
# However, the audio should've been padded to a multiple of samples_per_latent by now.
y_size = total_size // samples_per_latent
# Create an empty latent, we will populate it with chunks as we encode them
y_final = torch.zeros((batch_size,latent_dim,y_size)).to(audio.device)
for i in range(num_chunks):
x_chunk = chunks[i,:]
# encode the chunk
y_chunk = vae_model.encode_export(x_chunk)
# figure out where to put the audio along the time domain
if i == num_chunks-1:
# final chunk always goes at the end
t_end = y_size
t_start = t_end - y_chunk.shape[2]
else:
t_start = i * hop_size // samples_per_latent
t_end = t_start + chunk_size // samples_per_latent
# remove the edges of the overlaps
ol = overlap//samples_per_latent//2
chunk_start = 0
chunk_end = y_chunk.shape[2]
if i > 0:
# no overlap for the start of the first chunk
t_start += ol
chunk_start += ol
if i < num_chunks-1:
# no overlap for the end of the last chunk
t_end -= ol
chunk_end -= ol
# paste the chunked audio into our y_final output audio
y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
return y_final
def prepare_model(device):
# prepare cfm model
dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-1_2", filename="cfm_model.pt")
dit_config_path = "./diffrhythm/config/config.json"
with open(dit_config_path) as f:
model_config = json.load(f)
dit_model_cls = DiT
cfm = CFM(
transformer=dit_model_cls(**model_config["model"], max_frames=2048),
num_channels=model_config["model"]['mel_dim'],
)
cfm = cfm.to(device)
cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False)
# prepare tokenizer
tokenizer = CNENTokenizer()
# prepare muq
muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large", cache_dir="./pretrained")
muq = muq.to(device).eval()
# prepare vae
vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
vae = torch.jit.load(vae_ckpt_path, map_location="cpu").to(device)
# prepare eval model
train_config = OmegaConf.load("./pretrained/eval.yaml")
checkpoint_path = "./pretrained/eval.safetensors"
eval_model = instantiate(train_config.generator).to(device).eval()
state_dict = load_file(checkpoint_path, device="cpu")
eval_model.load_state_dict(state_dict)
eval_muq = MuQ.from_pretrained("OpenMuQ/MuQ-large-msd-iter")
eval_muq = eval_muq.to(device).eval()
return cfm, tokenizer, muq, vae, eval_model, eval_muq
# for song edit, will be added in the future
def get_reference_latent(device, max_frames, edit, pred_segments, ref_song, vae_model):
sampling_rate = 44100
downsample_rate = 2048
io_channels = 2
if edit:
input_audio, in_sr = torchaudio.load(ref_song)
input_audio = prepare_audio(input_audio, in_sr=in_sr, target_sr=sampling_rate, target_length=None, target_channels=io_channels, device=device)
input_audio = normalize_audio(input_audio, -6)
with torch.no_grad():
latent = encode_audio(input_audio, vae_model, chunked=True) # [b d t]
mean, scale = latent.chunk(2, dim=1)
prompt, _ = vae_sample(mean, scale)
prompt = prompt.transpose(1, 2) # [b t d]
pred_segments = json.loads(pred_segments)
# import pdb; pdb.set_trace()
pred_frames = []
for st, et in pred_segments:
sf = 0 if st == -1 else int(st * sampling_rate / downsample_rate)
# if st == -1:
# sf = 0
# else:
# sf = int(st * sampling_rate / downsample_rate )
ef = max_frames if et == -1 else int(et * sampling_rate / downsample_rate)
# if et == -1:
# ef = max_frames
# else:
# ef = int(et * sampling_rate / downsample_rate )
pred_frames.append((sf, ef))
# import pdb; pdb.set_trace()
return prompt, pred_frames
else:
prompt = torch.zeros(1, max_frames, 64).to(device)
pred_frames = [(0, max_frames)]
return prompt, pred_frames
def get_negative_style_prompt(device):
file_path = "./src/negative_prompt.npy"
vocal_stlye = np.load(file_path)
vocal_stlye = torch.from_numpy(vocal_stlye).to(device) # [1, 512]
vocal_stlye = vocal_stlye.half()
return vocal_stlye
@torch.no_grad()
def eval_song(eval_model, eval_muq, songs):
resampled_songs = [torchaudio.functional.resample(song.mean(dim=0, keepdim=True), 44100, 24000) for song in songs]
ssl_list = []
for i in range(len(resampled_songs)):
output = eval_muq(resampled_songs[i], output_hidden_states=True)
muq_ssl = output["hidden_states"][6]
ssl_list.append(muq_ssl.squeeze(0))
ssl = torch.stack(ssl_list)
scores_g = eval_model(ssl)
score = torch.mean(scores_g, dim=1)
idx = score.argmax(dim=0)
return songs[idx]
@torch.no_grad()
def get_audio_style_prompt(model, wav_path):
vocal_flag = False
mulan = model
audio, _ = librosa.load(wav_path, sr=24000)
audio_len = librosa.get_duration(y=audio, sr=24000)
if audio_len <= 1:
vocal_flag = True
if audio_len > 10:
start_time = int(audio_len // 2 - 5)
wav = audio[start_time*24000:(start_time+10)*24000]
else:
wav = audio
wav = torch.tensor(wav).unsqueeze(0).to(model.device)
with torch.no_grad():
audio_emb = mulan(wavs = wav) # [1, 512]
audio_emb = audio_emb.half()
return audio_emb, vocal_flag
@torch.no_grad()
def get_text_style_prompt(model, text_prompt):
mulan = model
with torch.no_grad():
text_emb = mulan(texts = text_prompt) # [1, 512]
text_emb = text_emb.half()
return text_emb
@torch.no_grad()
def get_style_prompt(model, wav_path=None, prompt=None):
mulan = model
if prompt is not None:
return mulan(texts=prompt).half()
ext = os.path.splitext(wav_path)[-1].lower()
if ext == ".mp3":
meta = MP3(wav_path)
audio_len = meta.info.length
elif ext in [".wav", ".flac"]:
audio_len = librosa.get_duration(path=wav_path)
else:
raise ValueError("Unsupported file format: {}".format(ext))
if audio_len < 10:
print(
f"Warning: The audio file {wav_path} is too short ({audio_len:.2f} seconds). Expected at least 10 seconds."
)
assert audio_len >= 10
mid_time = audio_len // 2
start_time = mid_time - 5
wav, _ = librosa.load(wav_path, sr=24000, offset=start_time, duration=10)
wav = torch.tensor(wav).unsqueeze(0).to(model.device)
with torch.no_grad():
audio_emb = mulan(wavs=wav) # [1, 512]
audio_emb = audio_emb
audio_emb = audio_emb.half()
return audio_emb
def parse_lyrics(lyrics: str):
lyrics_with_time = []
lyrics = lyrics.strip()
for line in lyrics.split("\n"):
try:
time, lyric = line[1:9], line[10:]
lyric = lyric.strip()
mins, secs = time.split(":")
secs = int(mins) * 60 + float(secs)
lyrics_with_time.append((secs, lyric))
except:
continue
return lyrics_with_time
class CNENTokenizer:
def __init__(self):
with open("./diffrhythm/g2p/g2p/vocab.json", "r", encoding='utf-8') as file:
self.phone2id: dict = json.load(file)["vocab"]
self.id2phone = {v: k for (k, v) in self.phone2id.items()}
from diffrhythm.g2p.g2p_generation import chn_eng_g2p
self.tokenizer = chn_eng_g2p
def encode(self, text):
phone, token = self.tokenizer(text)
token = [x + 1 for x in token]
return token
def decode(self, token):
return "|".join([self.id2phone[x - 1] for x in token])
def get_lrc_token(max_frames, text, tokenizer, device):
lyrics_shift = 0
sampling_rate = 44100
downsample_rate = 2048
max_secs = max_frames / (sampling_rate / downsample_rate)
comma_token_id = 1
period_token_id = 2
lrc_with_time = parse_lyrics(text)
modified_lrc_with_time = []
for i in range(len(lrc_with_time)):
time, line = lrc_with_time[i]
line_token = tokenizer.encode(line)
modified_lrc_with_time.append((time, line_token))
lrc_with_time = modified_lrc_with_time
lrc_with_time = [
(time_start, line)
for (time_start, line) in lrc_with_time
if time_start < max_secs
]
if max_frames == 2048:
lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time
normalized_start_time = 0.0
lrc = torch.zeros((max_frames,), dtype=torch.long)
tokens_count = 0
last_end_pos = 0
for time_start, line in lrc_with_time:
tokens = [
token if token != period_token_id else comma_token_id for token in line
] + [period_token_id]
tokens = torch.tensor(tokens, dtype=torch.long)
num_tokens = tokens.shape[0]
gt_frame_start = int(time_start * sampling_rate / downsample_rate)
frame_shift = random.randint(int(-lyrics_shift), int(lyrics_shift))
frame_start = max(gt_frame_start - frame_shift, last_end_pos)
frame_len = min(num_tokens, max_frames - frame_start)
lrc[frame_start : frame_start + frame_len] = tokens[:frame_len]
tokens_count += num_tokens
last_end_pos = frame_start + frame_len
lrc_emb = lrc.unsqueeze(0).to(device)
normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device)
normalized_start_time = normalized_start_time.half()
return lrc_emb, normalized_start_time
def load_checkpoint(model, ckpt_path, device, use_ema=True):
model = model.half()
ckpt_type = ckpt_path.split(".")[-1]
if ckpt_type == "safetensors":
from safetensors.torch import load_file
checkpoint = load_file(ckpt_path)
else:
checkpoint = torch.load(ckpt_path, weights_only=True)
if use_ema:
if ckpt_type == "safetensors":
checkpoint = {"ema_model_state_dict": checkpoint}
checkpoint["model_state_dict"] = {
k.replace("ema_model.", ""): v
for k, v in checkpoint["ema_model_state_dict"].items()
if k not in ["initted", "step"]
}
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
else:
if ckpt_type == "safetensors":
checkpoint = {"model_state_dict": checkpoint}
model.load_state_dict(checkpoint["model_state_dict"], strict=False)
return model.to(device)
|