File size: 17,026 Bytes
b96e750
 
f5b749d
b96e750
 
f5b749d
b96e750
 
 
4e97955
f5b749d
 
 
 
b96e750
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
 
 
f5b749d
 
 
b96e750
 
 
 
f5b749d
b96e750
 
 
 
f5b749d
b96e750
 
f5b749d
b96e750
f5b749d
b96e750
f5b749d
b96e750
4e97955
f5b749d
 
b96e750
f5b749d
 
 
 
 
 
 
 
 
 
 
 
5e24eef
b96e750
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
 
5fa1afb
b96e750
f5b749d
 
b96e750
f5b749d
b96e750
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
07e6e48
 
b96e750
b311ba6
 
b96e750
07e6e48
 
b96e750
b311ba6
 
 
b96e750
d0bd81d
b311ba6
d0bd81d
b96e750
 
d0bd81d
b96e750
 
 
07e6e48
 
f5b749d
 
07e6e48
 
 
 
 
 
 
 
 
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
 
 
 
f5b749d
b96e750
 
 
f5b749d
b96e750
 
 
 
 
 
f5b749d
 
b96e750
f5b749d
 
 
b96e750
f5b749d
b96e750
f5b749d
b96e750
 
f5b749d
b96e750
f5b749d
b96e750
f5b749d
 
 
5e24eef
b96e750
 
 
 
 
f5b749d
b96e750
f5b749d
b96e750
 
f5b749d
b96e750
 
 
 
 
 
 
f5b749d
 
 
 
 
 
 
 
 
b96e750
 
 
 
 
 
f5b749d
 
 
b96e750
 
 
 
f5b749d
 
 
b96e750
 
 
f5b749d
b96e750
 
f5b749d
 
b96e750
f5b749d
b96e750
 
f5b749d
b96e750
 
f5b749d
b96e750
f5b749d
b96e750
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5b749d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import torch
import librosa
import torchaudio
import random
import json
from muq import MuQMuLan, MuQ
from mutagen.mp3 import MP3
import os
import numpy as np
from huggingface_hub import hf_hub_download
from hydra.utils import instantiate
from omegaconf import OmegaConf
from safetensors.torch import load_file

from diffrhythm.model import DiT, CFM

def vae_sample(mean, scale):
    stdev = torch.nn.functional.softplus(scale) + 1e-4
    var = stdev * stdev
    logvar = torch.log(var)
    latents = torch.randn_like(mean) * stdev + mean

    kl = (mean * mean + var - logvar - 1).sum(1).mean()

    return latents, kl

def normalize_audio(y, target_dbfs=0):
    max_amplitude = torch.max(torch.abs(y))

    target_amplitude = 10.0**(target_dbfs / 20.0)
    scale_factor = target_amplitude / max_amplitude

    normalized_audio = y * scale_factor

    return normalized_audio

def set_audio_channels(audio, target_channels):
    if target_channels == 1:
        # Convert to mono
        audio = audio.mean(1, keepdim=True)
    elif target_channels == 2:
        # Convert to stereo
        if audio.shape[1] == 1:
            audio = audio.repeat(1, 2, 1)
        elif audio.shape[1] > 2:
            audio = audio[:, :2, :]
    return audio

class PadCrop(torch.nn.Module):
    def __init__(self, n_samples, randomize=True):
        super().__init__()
        self.n_samples = n_samples
        self.randomize = randomize

    def __call__(self, signal):
        n, s = signal.shape
        start = 0 if (not self.randomize) else torch.randint(0, max(0, s - self.n_samples) + 1, []).item()
        end = start + self.n_samples
        output = signal.new_zeros([n, self.n_samples])
        output[:, :min(s, self.n_samples)] = signal[:, start:end]
        return output

def prepare_audio(audio, in_sr, target_sr, target_length, target_channels, device):
    
    audio = audio.to(device)

    if in_sr != target_sr:
        resample_tf = T.Resample(in_sr, target_sr).to(device)
        audio = resample_tf(audio)
    if target_length is None:
        target_length = audio.shape[-1]
    audio = PadCrop(target_length, randomize=False)(audio)

    # Add batch dimension
    if audio.dim() == 1:
        audio = audio.unsqueeze(0).unsqueeze(0)
    elif audio.dim() == 2:
        audio = audio.unsqueeze(0)

    audio = set_audio_channels(audio, target_channels)

    return audio

def decode_audio(latents, vae_model, chunked=False, overlap=32, chunk_size=128):
    downsampling_ratio = 2048
    io_channels = 2
    if not chunked:
        return vae_model.decode_export(latents)
    else:
        # chunked decoding
        hop_size = chunk_size - overlap
        total_size = latents.shape[2]
        batch_size = latents.shape[0]
        chunks = []
        i = 0
        for i in range(0, total_size - chunk_size + 1, hop_size):
            chunk = latents[:, :, i : i + chunk_size]
            chunks.append(chunk)
        if i + chunk_size != total_size:
            # Final chunk
            chunk = latents[:, :, -chunk_size:]
            chunks.append(chunk)
        chunks = torch.stack(chunks)
        num_chunks = chunks.shape[0]
        # samples_per_latent is just the downsampling ratio
        samples_per_latent = downsampling_ratio
        # Create an empty waveform, we will populate it with chunks as decode them
        y_size = total_size * samples_per_latent
        y_final = torch.zeros((batch_size, io_channels, y_size)).to(latents.device)
        for i in range(num_chunks):
            x_chunk = chunks[i, :]
            # decode the chunk
            y_chunk = vae_model.decode_export(x_chunk)
            # figure out where to put the audio along the time domain
            if i == num_chunks - 1:
                # final chunk always goes at the end
                t_end = y_size
                t_start = t_end - y_chunk.shape[2]
            else:
                t_start = i * hop_size * samples_per_latent
                t_end = t_start + chunk_size * samples_per_latent
            #  remove the edges of the overlaps
            ol = (overlap // 2) * samples_per_latent
            chunk_start = 0
            chunk_end = y_chunk.shape[2]
            if i > 0:
                # no overlap for the start of the first chunk
                t_start += ol
                chunk_start += ol
            if i < num_chunks - 1:
                # no overlap for the end of the last chunk
                t_end -= ol
                chunk_end -= ol
            # paste the chunked audio into our y_final output audio
            y_final[:, :, t_start:t_end] = y_chunk[:, :, chunk_start:chunk_end]
        return y_final

def encode_audio(audio, vae_model, chunked=False, overlap=32, chunk_size=128):
    downsampling_ratio = 2048
    latent_dim = 128
    if not chunked:
        # default behavior. Encode the entire audio in parallel
        return vae_model.encode_export(audio)
    else:
        # CHUNKED ENCODING
        # samples_per_latent is just the downsampling ratio (which is also the upsampling ratio)
        samples_per_latent = downsampling_ratio
        total_size = audio.shape[2] # in samples
        batch_size = audio.shape[0]
        chunk_size *= samples_per_latent # converting metric in latents to samples
        overlap *= samples_per_latent # converting metric in latents to samples
        hop_size = chunk_size - overlap
        chunks = []
        for i in range(0, total_size - chunk_size + 1, hop_size):
            chunk = audio[:,:,i:i+chunk_size]
            chunks.append(chunk)
        if i+chunk_size != total_size:
            # Final chunk
            chunk = audio[:,:,-chunk_size:]
            chunks.append(chunk)
        chunks = torch.stack(chunks)
        num_chunks = chunks.shape[0]
        # Note: y_size might be a different value from the latent length used in diffusion training
        # because we can encode audio of varying lengths
        # However, the audio should've been padded to a multiple of samples_per_latent by now.
        y_size = total_size // samples_per_latent
        # Create an empty latent, we will populate it with chunks as we encode them
        y_final = torch.zeros((batch_size,latent_dim,y_size)).to(audio.device)
        for i in range(num_chunks):
            x_chunk = chunks[i,:]
            # encode the chunk
            y_chunk = vae_model.encode_export(x_chunk)
            # figure out where to put the audio along the time domain
            if i == num_chunks-1:
                # final chunk always goes at the end
                t_end = y_size
                t_start = t_end - y_chunk.shape[2]
            else:
                t_start = i * hop_size // samples_per_latent
                t_end = t_start + chunk_size // samples_per_latent
            #  remove the edges of the overlaps
            ol = overlap//samples_per_latent//2
            chunk_start = 0
            chunk_end = y_chunk.shape[2]
            if i > 0:
                # no overlap for the start of the first chunk
                t_start += ol
                chunk_start += ol
            if i < num_chunks-1:
                # no overlap for the end of the last chunk
                t_end -= ol
                chunk_end -= ol
            # paste the chunked audio into our y_final output audio
            y_final[:,:,t_start:t_end] = y_chunk[:,:,chunk_start:chunk_end]
        return y_final

def prepare_model(device):
    # prepare cfm model
    
    dit_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-1_2", filename="cfm_model.pt")
    dit_config_path = "./diffrhythm/config/config.json"
    with open(dit_config_path) as f:
        model_config = json.load(f)
    dit_model_cls = DiT
    cfm = CFM(
                transformer=dit_model_cls(**model_config["model"], max_frames=2048),
                num_channels=model_config["model"]['mel_dim'],
             )
    cfm = cfm.to(device)
    cfm = load_checkpoint(cfm, dit_ckpt_path, device=device, use_ema=False)

    # prepare tokenizer
    tokenizer = CNENTokenizer()

    # prepare muq
    muq = MuQMuLan.from_pretrained("OpenMuQ/MuQ-MuLan-large", cache_dir="./pretrained")
    muq = muq.to(device).eval()

    # prepare vae
    vae_ckpt_path = hf_hub_download(repo_id="ASLP-lab/DiffRhythm-vae", filename="vae_model.pt")
    vae = torch.jit.load(vae_ckpt_path, map_location="cpu").to(device)
    
    
    # prepare eval model
    train_config = OmegaConf.load("./pretrained/eval.yaml")
    checkpoint_path = "./pretrained/eval.safetensors"

    eval_model = instantiate(train_config.generator).to(device).eval()
    state_dict = load_file(checkpoint_path, device="cpu")
    eval_model.load_state_dict(state_dict)

    eval_muq = MuQ.from_pretrained("OpenMuQ/MuQ-large-msd-iter")
    eval_muq = eval_muq.to(device).eval()

    return cfm, tokenizer, muq, vae, eval_model, eval_muq


# for song edit, will be added in the future
def get_reference_latent(device, max_frames, edit, pred_segments, ref_song, vae_model):
    sampling_rate = 44100
    downsample_rate = 2048
    io_channels = 2
    if edit:
        input_audio, in_sr = torchaudio.load(ref_song)
        input_audio = prepare_audio(input_audio, in_sr=in_sr, target_sr=sampling_rate, target_length=None, target_channels=io_channels, device=device)
        input_audio = normalize_audio(input_audio, -6)
        
        with torch.no_grad():
            latent = encode_audio(input_audio, vae_model, chunked=True) # [b d t]
            mean, scale = latent.chunk(2, dim=1)
            prompt, _ = vae_sample(mean, scale)
            prompt = prompt.transpose(1, 2) # [b t d]
        
        pred_segments = json.loads(pred_segments)
        # import pdb; pdb.set_trace()
        pred_frames = []
        for st, et in pred_segments:
            sf = 0 if st == -1 else int(st * sampling_rate / downsample_rate)
            # if st == -1:
            #     sf = 0
            # else:
            #     sf = int(st * sampling_rate / downsample_rate )
            
            ef = max_frames if et == -1 else int(et * sampling_rate / downsample_rate)
            # if et == -1:
            #     ef = max_frames
            # else:
            #     ef = int(et * sampling_rate / downsample_rate )
            pred_frames.append((sf, ef))
        # import pdb; pdb.set_trace()
        return prompt, pred_frames
    else:
        prompt = torch.zeros(1, max_frames, 64).to(device)
        pred_frames = [(0, max_frames)]
        return prompt, pred_frames


def get_negative_style_prompt(device):
    file_path = "./src/negative_prompt.npy"
    vocal_stlye = np.load(file_path)

    vocal_stlye = torch.from_numpy(vocal_stlye).to(device)  # [1, 512]
    vocal_stlye = vocal_stlye.half()

    return vocal_stlye

@torch.no_grad()
def eval_song(eval_model, eval_muq, songs):
    
    resampled_songs = [torchaudio.functional.resample(song.mean(dim=0, keepdim=True), 44100, 24000) for song in songs]
    ssl_list = []
    for i in range(len(resampled_songs)):
        output = eval_muq(resampled_songs[i], output_hidden_states=True)
        muq_ssl = output["hidden_states"][6]
        ssl_list.append(muq_ssl.squeeze(0))

    ssl = torch.stack(ssl_list)
    scores_g = eval_model(ssl)
    score = torch.mean(scores_g, dim=1)
    idx = score.argmax(dim=0)
    
    return songs[idx]
    

@torch.no_grad()
def get_audio_style_prompt(model, wav_path):
    vocal_flag = False
    mulan = model
    audio, _ = librosa.load(wav_path, sr=24000)
    audio_len = librosa.get_duration(y=audio, sr=24000)
    
    if audio_len <= 1:
        vocal_flag = True
    
    if audio_len > 10:
        start_time = int(audio_len // 2 - 5)
        wav = audio[start_time*24000:(start_time+10)*24000]
    
    else:
        wav = audio
    wav = torch.tensor(wav).unsqueeze(0).to(model.device)
    
    with torch.no_grad():
        audio_emb = mulan(wavs = wav) # [1, 512]
        
    audio_emb = audio_emb.half()

    return audio_emb, vocal_flag


@torch.no_grad()
def get_text_style_prompt(model, text_prompt):
    mulan = model
    
    with torch.no_grad():
        text_emb = mulan(texts = text_prompt) # [1, 512]
    text_emb = text_emb.half()

    return text_emb


@torch.no_grad()
def get_style_prompt(model, wav_path=None, prompt=None):
    mulan = model

    if prompt is not None:
        return mulan(texts=prompt).half()

    ext = os.path.splitext(wav_path)[-1].lower()
    if ext == ".mp3":
        meta = MP3(wav_path)
        audio_len = meta.info.length
    elif ext in [".wav", ".flac"]:
        audio_len = librosa.get_duration(path=wav_path)
    else:
        raise ValueError("Unsupported file format: {}".format(ext))

    if audio_len < 10:
        print(
            f"Warning: The audio file {wav_path} is too short ({audio_len:.2f} seconds). Expected at least 10 seconds."
        )

    assert audio_len >= 10

    mid_time = audio_len // 2
    start_time = mid_time - 5
    wav, _ = librosa.load(wav_path, sr=24000, offset=start_time, duration=10)

    wav = torch.tensor(wav).unsqueeze(0).to(model.device)

    with torch.no_grad():
        audio_emb = mulan(wavs=wav)  # [1, 512]

    audio_emb = audio_emb
    audio_emb = audio_emb.half()

    return audio_emb

def parse_lyrics(lyrics: str):
    lyrics_with_time = []
    lyrics = lyrics.strip()
    for line in lyrics.split("\n"):
        try:
            time, lyric = line[1:9], line[10:]
            lyric = lyric.strip()
            mins, secs = time.split(":")
            secs = int(mins) * 60 + float(secs)
            lyrics_with_time.append((secs, lyric))
        except:
            continue
    return lyrics_with_time


class CNENTokenizer:
    def __init__(self):
        with open("./diffrhythm/g2p/g2p/vocab.json", "r", encoding='utf-8') as file:
            self.phone2id: dict = json.load(file)["vocab"]
        self.id2phone = {v: k for (k, v) in self.phone2id.items()}
        from diffrhythm.g2p.g2p_generation import chn_eng_g2p

        self.tokenizer = chn_eng_g2p

    def encode(self, text):
        phone, token = self.tokenizer(text)
        token = [x + 1 for x in token]
        return token

    def decode(self, token):
        return "|".join([self.id2phone[x - 1] for x in token])


def get_lrc_token(max_frames, text, tokenizer, device):

    lyrics_shift = 0
    sampling_rate = 44100
    downsample_rate = 2048
    max_secs = max_frames / (sampling_rate / downsample_rate)

    comma_token_id = 1
    period_token_id = 2

    lrc_with_time = parse_lyrics(text)

    modified_lrc_with_time = []
    for i in range(len(lrc_with_time)):
        time, line = lrc_with_time[i]
        line_token = tokenizer.encode(line)
        modified_lrc_with_time.append((time, line_token))
    lrc_with_time = modified_lrc_with_time

    lrc_with_time = [
        (time_start, line)
        for (time_start, line) in lrc_with_time
        if time_start < max_secs
    ]
    if max_frames == 2048:
        lrc_with_time = lrc_with_time[:-1] if len(lrc_with_time) >= 1 else lrc_with_time

    normalized_start_time = 0.0

    lrc = torch.zeros((max_frames,), dtype=torch.long)

    tokens_count = 0
    last_end_pos = 0
    for time_start, line in lrc_with_time:
        tokens = [
            token if token != period_token_id else comma_token_id for token in line
        ] + [period_token_id]
        tokens = torch.tensor(tokens, dtype=torch.long)
        num_tokens = tokens.shape[0]

        gt_frame_start = int(time_start * sampling_rate / downsample_rate)

        frame_shift = random.randint(int(-lyrics_shift), int(lyrics_shift))

        frame_start = max(gt_frame_start - frame_shift, last_end_pos)
        frame_len = min(num_tokens, max_frames - frame_start)

        lrc[frame_start : frame_start + frame_len] = tokens[:frame_len]

        tokens_count += num_tokens
        last_end_pos = frame_start + frame_len

    lrc_emb = lrc.unsqueeze(0).to(device)

    normalized_start_time = torch.tensor(normalized_start_time).unsqueeze(0).to(device)
    normalized_start_time = normalized_start_time.half()

    return lrc_emb, normalized_start_time


def load_checkpoint(model, ckpt_path, device, use_ema=True):
    model = model.half()

    ckpt_type = ckpt_path.split(".")[-1]
    if ckpt_type == "safetensors":
        from safetensors.torch import load_file

        checkpoint = load_file(ckpt_path)
    else:
        checkpoint = torch.load(ckpt_path, weights_only=True)

    if use_ema:
        if ckpt_type == "safetensors":
            checkpoint = {"ema_model_state_dict": checkpoint}
        checkpoint["model_state_dict"] = {
            k.replace("ema_model.", ""): v
            for k, v in checkpoint["ema_model_state_dict"].items()
            if k not in ["initted", "step"]
        }
        model.load_state_dict(checkpoint["model_state_dict"], strict=False)
    else:
        if ckpt_type == "safetensors":
            checkpoint = {"model_state_dict": checkpoint}
        model.load_state_dict(checkpoint["model_state_dict"], strict=False)

    return model.to(device)