File size: 6,761 Bytes
b96e750
 
 
 
 
f5b749d
b96e750
f5b749d
 
 
b96e750
f5b749d
9743771
 
b96e750
 
f5b749d
b96e750
f5b749d
 
 
b96e750
f5b749d
b96e750
 
5fa1afb
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
f5b749d
b96e750
 
 
 
 
ccebb03
69ef734
ccebb03
07e6e48
 
69ef734
f5b749d
 
b96e750
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2a3c97e
5fa1afb
 
 
 
 
 
 
 
 
 
 
b96e750
f5b749d
 
b96e750
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
 
 
 
 
f5b749d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b96e750
 
 
f5b749d
b96e750
f5b749d
 
 
 
 
 
 
 
 
b96e750
f5b749d
b96e750
 
f5b749d
b96e750
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torchaudio
from einops import rearrange
import argparse
import os
import time
import random

import torch
import torchaudio
import numpy as np
from einops import rearrange
import io
import pydub

from diffrhythm.infer.infer_utils import (
    decode_audio,
    get_lrc_token,
    get_negative_style_prompt,
    get_reference_latent,
    get_style_prompt,
    prepare_model,
    eval_song,
)


def inference(
    cfm_model,
    vae_model,
    eval_model,
    eval_muq,
    cond,
    text,
    duration,
    style_prompt,
    negative_style_prompt,
    steps,
    cfg_strength,
    sway_sampling_coef,
    start_time,
    file_type,
    vocal_flag,
    odeint_method,
    pred_frames,
    batch_infer_num,
    chunked=True,
):
    with torch.inference_mode():
        latents, _ = cfm_model.sample(
            cond=cond,
            text=text,
            duration=duration,
            style_prompt=style_prompt,
            negative_style_prompt=negative_style_prompt,
            steps=steps,
            cfg_strength=cfg_strength,
            sway_sampling_coef=sway_sampling_coef,
            start_time=start_time,
            vocal_flag=vocal_flag,
            odeint_method=odeint_method,
            latent_pred_segments=pred_frames,
            batch_infer_num=batch_infer_num
        )

        outputs = []
        for latent in latents:
            latent = latent.to(torch.float32)
            latent = latent.transpose(1, 2)  # [b d t]

            output = decode_audio(latent, vae_model, chunked=chunked)

            # Rearrange audio batch to a single sequence
            output = rearrange(output, "b d n -> d (b n)")
            
            outputs.append(output)
        if batch_infer_num > 1:
            generated_song = eval_song(eval_model, eval_muq, outputs)
        else:
            generated_song = outputs[0]
        output_tensor = generated_song.to(torch.float32).div(torch.max(torch.abs(output))).clamp(-1, 1).cpu()
        output_np = output_tensor.numpy().T.astype(np.float32)
        if file_type == 'wav':
            return (44100, output_np)
        else:
            buffer = io.BytesIO()
            output_np = np.int16(output_np * 2**15)
            song = pydub.AudioSegment(output_np.tobytes(), frame_rate=44100, sample_width=2, channels=2)
            if file_type == 'mp3':
                song.export(buffer, format="mp3", bitrate="320k")
            else:
                song.export(buffer, format="ogg", bitrate="320k")
            return buffer.getvalue()
        


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--lrc-path",
        type=str,
        help="lyrics of target song",
    )  # lyrics of target song
    parser.add_argument(
        "--ref-prompt",
        type=str,
        help="reference prompt as style prompt for target song",
        required=False,
    )  # reference prompt as style prompt for target song
    parser.add_argument(
        "--ref-audio-path",
        type=str,
        help="reference audio as style prompt for target song",
        required=False,
    )  # reference audio as style prompt for target song
    parser.add_argument(
        "--chunked",
        action="store_true",
        help="whether to use chunked decoding",
    )  # whether to use chunked decoding
    parser.add_argument(
        "--audio-length",
        type=int,
        default=95,
        choices=[95, 285],
        help="length of generated song",
    )  # length of target song
    parser.add_argument(
        "--repo-id", type=str, default="ASLP-lab/DiffRhythm-base", help="target model"
    )
    parser.add_argument(
        "--output-dir",
        type=str,
        default="infer/example/output",
        help="output directory fo generated song",
    )  # output directory of target song
    parser.add_argument(
        "--edit",
        action="store_true",
        help="whether to open edit mode",
    )  # edit flag
    parser.add_argument(
        "--ref-song",
        type=str,
        required=False,
        help="reference prompt as latent prompt for editing",
    )  # reference prompt as latent prompt for editing
    parser.add_argument(
        "--edit-segments",
        type=str,
        required=False,
        help="edit segments o target song",
    )  # edit segments o target song
    args = parser.parse_args()

    assert (
        args.ref_prompt or args.ref_audio_path
    ), "either ref_prompt or ref_audio_path should be provided"
    assert not (
        args.ref_prompt and args.ref_audio_path
    ), "only one of them should be provided"
    if args.edit:
        assert (
            args.ref_song and args.edit_segments
        ), "reference song and edit segments should be provided for editing"

    device = "cpu"
    if torch.cuda.is_available():
        device = "cuda"
    elif torch.mps.is_available():
        device = "mps"

    audio_length = args.audio_length
    if audio_length == 95:
        max_frames = 2048
    elif audio_length == 285:
        max_frames = 6144

    cfm, tokenizer, muq, vae, eval_model, eval_muq = prepare_model(max_frames, device, repo_id=args.repo_id)

    if args.lrc_path:
        with open(args.lrc_path, "r", encoding='utf-8') as f:
            lrc = f.read()
    else:
        lrc = ""
    lrc_prompt, start_time = get_lrc_token(max_frames, lrc, tokenizer, device)

    if args.ref_audio_path:
        style_prompt = get_style_prompt(muq, args.ref_audio_path)
    else:
        style_prompt = get_style_prompt(muq, prompt=args.ref_prompt)

    negative_style_prompt = get_negative_style_prompt(device)

    latent_prompt, pred_frames = get_reference_latent(device, max_frames, args.edit, args.edit_segments, args.ref_song, vae)

    s_t = time.time()
    generated_songs = inference(
        cfm_model=cfm,
        vae_model=vae,
        cond=latent_prompt,
        text=lrc_prompt,
        duration=max_frames,
        style_prompt=style_prompt,
        negative_style_prompt=negative_style_prompt,
        start_time=start_time,
        pred_frames=pred_frames,
        chunked=args.chunked,
    )
    
    
    
    generated_song = eval_song(eval_model, eval_muq, generated_songs)
    
    # Peak normalize, clip, convert to int16, and save to file
    generated_song = (
        generated_song.to(torch.float32)
        .div(torch.max(torch.abs(generated_song)))
        .clamp(-1, 1)
        .mul(32767)
        .to(torch.int16)
        .cpu()
    )
    e_t = time.time() - s_t
    print(f"inference cost {e_t:.2f} seconds")
    output_dir = args.output_dir
    os.makedirs(output_dir, exist_ok=True)

    output_path = os.path.join(output_dir, "output.wav")
    torchaudio.save(output_path, generated_song, sample_rate=44100)