File size: 6,142 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
from functools import partial
from typing import List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint as ckpt
from wenet.transformer.attention import T_CACHE

from wenet.transformer.encoder_layer import TransformerEncoderLayer
from wenet.utils.class_utils import (WENET_ACTIVATION_CLASSES,
                                     WENET_ATTENTION_CLASSES,
                                     WENET_EMB_CLASSES, WENET_MLP_CLASSES,
                                     WENET_NORM_CLASSES)
from wenet.utils.common import mask_to_bias


class DecoderOnly(torch.nn.Module):

    def __init__(
        self,
        n_kv_head: int,
        head_dim: int,
        hidden_size: int,
        attention_heads: int = 4,
        linear_units: int = 2048,
        num_blocks: int = 6,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        normalize_before: bool = True,
        query_bias: bool = False,
        key_bias: bool = False,
        value_bias: bool = False,
        mlp_bias: bool = False,
        activation_type: str = "gelu",
        gelu_approximate: Union[str, None] = None,
        max_position_embeding: int = 8192,
        mlp_type: str = 'gated',
        layer_norm_type: str = 'rms_norm',
        norm_eps: float = 1e-5,
        rms_norm_offset: bool = True,
        selfattention_layer_type: str = "rope_abs_selfattn",
        use_sdpa: bool = False,
        gradient_checkpointing: bool = False,
        rope_theta: float = 10000.0,
        rope_style: str = 'google',
        scale_embed: bool = True,
    ) -> None:
        super().__init__()

        assert selfattention_layer_type in ['rope_abs_selfattn']
        self.pos_enc = WENET_EMB_CLASSES["rope_pos"](
            hidden_size,
            head_dim,
            max_len=max_position_embeding,
            dropout_rate=positional_dropout_rate,
            rope_theta=rope_theta,
            scale=scale_embed)
        if activation_type == "gelu" and gelu_approximate is not None:
            activation = WENET_ACTIVATION_CLASSES['gelu'](
                approximate=gelu_approximate)
        else:
            activation = WENET_ACTIVATION_CLASSES[activation_type]()

        mlp_class = WENET_MLP_CLASSES[mlp_type]
        self.num_blocks = num_blocks
        # TODO: support lora & refactor lora
        self.decoders = torch.nn.ModuleList([
            TransformerEncoderLayer(
                hidden_size,
                WENET_ATTENTION_CLASSES[selfattention_layer_type](
                    attention_heads,
                    hidden_size,
                    attention_dropout_rate,
                    query_bias,
                    key_bias,
                    value_bias,
                    use_sdpa,
                    n_kv_head,
                    head_dim,
                    style=rope_style),
                mlp_class(hidden_size, linear_units, dropout_rate, activation,
                          mlp_bias),
                dropout_rate,
                normalize_before,
                layer_norm_type=layer_norm_type,
                norm_eps=norm_eps,
                rms_norm_offset=rms_norm_offset,
            ) for _ in range(self.num_blocks)
        ])
        self.pre_norm = normalize_before
        self.final_norm: Optional[torch.nn.Module] = None
        if self.pre_norm:
            norm_class = WENET_NORM_CLASSES[layer_norm_type]
            if layer_norm_type == "rms_norm":
                norm_class = partial(
                    norm_class,
                    add_unit_offset=rms_norm_offset,
                )
            self.final_norm = norm_class(hidden_size, eps=norm_eps)

        self.n_kv_head = n_kv_head
        self.head_dim = head_dim
        self._hidden_size = hidden_size
        self.use_sdpa = use_sdpa
        self.gradient_checkpointing = gradient_checkpointing

    def forward(
        self,
        input: torch.Tensor,
        att_mask: torch.Tensor,
        input_position: Union[int, torch.Tensor] = 0,
        kv_caches: Optional[List[T_CACHE]] = None,
    ) -> Tuple[torch.Tensor, Union[List[T_CACHE], None]]:
        xs, pos_emb = self.pos_enc(input, offset=input_position)
        if self.use_sdpa:
            att_mask = mask_to_bias(att_mask, xs.dtype)

        if self.gradient_checkpointing and self.training:
            xs = self.forward_layers_checkpointed(xs, att_mask, pos_emb)
        else:
            xs, kv_caches = self.forward_layers(xs, att_mask, pos_emb,
                                                kv_caches)
        if self.pre_norm and self.final_norm is not None:
            xs = self.final_norm(xs)
        return xs, kv_caches

    def forward_layers(
        self,
        xs: torch.Tensor,
        att_mask: torch.Tensor,
        pos_emb: torch.Tensor,
        kv_caches: Optional[List[T_CACHE]] = None,
    ) -> Tuple[torch.Tensor, Union[List[T_CACHE], None]]:
        if self.training:
            for (i, layer) in enumerate(self.decoders):
                xs, _, _, _ = layer(xs, att_mask, pos_emb)
            new_kv_caches = kv_caches
        else:
            assert kv_caches is not None
            new_kv_caches = []
            for (i, layer) in enumerate(self.decoders):
                xs, _, new_kv_cache, _ = layer(xs,
                                               att_mask,
                                               pos_emb,
                                               att_cache=(kv_caches[i][0],
                                                          kv_caches[i][1]))
                new_kv_caches.append(new_kv_cache)

        return xs, new_kv_caches

    @torch.jit.ignore(drop=True)
    def forward_layers_checkpointed(self, xs: torch.Tensor,
                                    att_mask: torch.Tensor,
                                    pos_emb: torch.Tensor) -> torch.Tensor:
        for layer in self.decoders:
            xs, _, _, _ = ckpt.checkpoint(layer.__call__, xs, att_mask,
                                          pos_emb)
        return xs

    @property
    def hidden_size(self):
        return self._hidden_size