File size: 7,183 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Copyright (c) 2023 Binbin Zhang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os

import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi

from wenet.cli.hub import Hub
from wenet.utils.ctc_utils import (force_align, gen_ctc_peak_time,
                                   gen_timestamps_from_peak)
from wenet.utils.file_utils import read_symbol_table
from wenet.transformer.search import (attention_rescoring,
                                      ctc_prefix_beam_search, DecodeResult)
from wenet.utils.context_graph import ContextGraph
from wenet.utils.common import TORCH_NPU_AVAILABLE  # noqa just ensure to check torch-npu


class Model:

    def __init__(self,
                 model_dir: str,
                 gpu: int = -1,
                 beam: int = 5,
                 context_path: str = None,
                 context_score: float = 6.0,
                 resample_rate: int = 16000):
        model_path = os.path.join(model_dir, 'final.zip')
        units_path = os.path.join(model_dir, 'units.txt')
        self.model = torch.jit.load(model_path)
        self.resample_rate = resample_rate
        self.model.eval()
        if gpu >= 0:
            device = 'cuda:{}'.format(gpu)
        else:
            device = 'cpu'
        self.device = torch.device(device)
        self.model.to(device)
        self.symbol_table = read_symbol_table(units_path)
        self.char_dict = {v: k for k, v in self.symbol_table.items()}
        self.beam = beam
        if context_path is not None:
            self.context_graph = ContextGraph(context_path,
                                              self.symbol_table,
                                              context_score=context_score)
        else:
            self.context_graph = None

    def compute_feats(self, audio_file: str) -> torch.Tensor:
        waveform, sample_rate = torchaudio.load(audio_file, normalize=False)
        waveform = waveform.to(torch.float)
        if sample_rate != self.resample_rate:
            waveform = torchaudio.transforms.Resample(
                orig_freq=sample_rate, new_freq=self.resample_rate)(waveform)
        # NOTE (MengqingCao): complex dtype not supported in torch_npu.abs() now,
        # thus, delay placing data on NPU after the calculation of fbank.
        # revert me after complex dtype is supported.
        if "npu" not in self.device.__str__():
            waveform = waveform.to(self.device)
        feats = kaldi.fbank(waveform,
                            num_mel_bins=80,
                            frame_length=25,
                            frame_shift=10,
                            energy_floor=0.0,
                            sample_frequency=self.resample_rate)
        if "npu" in self.device.__str__():
            feats = feats.to(self.device)
        feats = feats.unsqueeze(0)
        return feats

    @torch.no_grad()
    def _decode(self,
                audio_file: str,
                tokens_info: bool = False,
                label: str = None) -> dict:
        feats = self.compute_feats(audio_file)
        encoder_out, _, _ = self.model.forward_encoder_chunk(feats, 0, -1)
        encoder_lens = torch.tensor([encoder_out.size(1)],
                                    dtype=torch.long,
                                    device=encoder_out.device)
        ctc_probs = self.model.ctc_activation(encoder_out)
        if label is None:
            ctc_prefix_results = ctc_prefix_beam_search(
                ctc_probs,
                encoder_lens,
                self.beam,
                context_graph=self.context_graph)
        else:  # force align mode, construct ctc prefix result from alignment
            label_t = self.tokenize(label)
            alignment = force_align(ctc_probs.squeeze(0),
                                    torch.tensor(label_t, dtype=torch.long))
            peaks = gen_ctc_peak_time(alignment)
            ctc_prefix_results = [
                DecodeResult(tokens=label_t,
                             score=0.0,
                             times=peaks,
                             nbest=[label_t],
                             nbest_scores=[0.0],
                             nbest_times=[peaks])
            ]
        rescoring_results = attention_rescoring(self.model, ctc_prefix_results,
                                                encoder_out, encoder_lens, 0.3,
                                                0.5)
        res = rescoring_results[0]
        result = {}
        result['text'] = ''.join([self.char_dict[x] for x in res.tokens])
        result['confidence'] = res.confidence

        if tokens_info:
            frame_rate = self.model.subsampling_rate(
            ) * 0.01  # 0.01 seconds per frame
            max_duration = encoder_out.size(1) * frame_rate
            times = gen_timestamps_from_peak(res.times, max_duration,
                                             frame_rate, 1.0)
            tokens_info = []
            for i, x in enumerate(res.tokens):
                tokens_info.append({
                    'token': self.char_dict[x],
                    'start': round(times[i][0], 3),
                    'end': round(times[i][1], 3),
                    'confidence': round(res.tokens_confidence[i], 2)
                })
            result['tokens'] = tokens_info
        return result

    def transcribe(self, audio_file: str, tokens_info: bool = False) -> dict:
        return self._decode(audio_file, tokens_info)

    def tokenize(self, label: str):
        # TODO(Binbin Zhang): Support BPE
        tokens = []
        for c in label:
            if c == ' ':
                c = "▁"
            tokens.append(c)
        token_list = []
        for c in tokens:
            if c in self.symbol_table:
                token_list.append(self.symbol_table[c])
            elif '<unk>' in self.symbol_table:
                token_list.append(self.symbol_table['<unk>'])
        return token_list

    def align(self, audio_file: str, label: str) -> dict:
        return self._decode(audio_file, True, label)


def load_model(language: str = None,
               model_dir: str = None,
               gpu: int = -1,
               beam: int = 5,
               context_path: str = None,
               context_score: float = 6.0,
               device: str = "cpu") -> Model:
    if model_dir is None:
        model_dir = Hub.get_model_by_lang(language)

    if gpu != -1:
        # remain the original usage of gpu
        device = "cuda"
    model = Model(model_dir, gpu, beam, context_path, context_score)
    model.device = torch.device(device)
    model.model.to(device)
    return model