Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,291 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 |
# Copyright (c) 2023 Wenet Community. (authors: Dinghao Zhou)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from collections.abc import Callable
import copy
import sys
import tarfile
import logging
from typing import List, Optional
import numpy as np
import torch
from torch.utils.data import IterDataPipe, functional_datapipe
from torch.utils.data import datapipes
from torch.utils.data.datapipes.iter import Mapper
from torch.utils.data.datapipes.iter.sharding import (
SHARDING_PRIORITIES, ShardingFilterIterDataPipe)
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn
from wenet.dataset.processor import parse_url
@functional_datapipe("map_ignore_error")
class MapperIgnoreErrorDataPipe(Mapper):
def __init__(self,
dataset: IterDataPipe,
fn: Callable,
input_col=None,
output_col=None,
log_error: bool = True) -> None:
super().__init__(dataset, fn, input_col, output_col)
self._iter = None
self.log_error = log_error
def __iter__(self):
if self._iter is None:
self._iter = iter(self.datapipe)
while True:
try:
elem = next(self._iter)
yield self._apply_fn(elem)
except StopIteration:
self._iter = None
return
except Exception as ex:
if self.log_error:
logging.warning(str(ex))
@functional_datapipe('bucket_by_sequence_length')
class BucketBySequenceLengthDataPipe(IterDataPipe):
def __init__(
self,
dataset: IterDataPipe,
elem_length_func,
bucket_boundaries: List[int],
bucket_batch_sizes: List[int],
wrapper_class=None,
) -> None:
super().__init__()
_check_unpickable_fn(elem_length_func)
assert len(bucket_batch_sizes) == len(bucket_boundaries) + 1
self.bucket_batch_sizes = bucket_batch_sizes
self.bucket_boundaries = bucket_boundaries + [sys.maxsize]
self.elem_length_func = elem_length_func
self._group_dp = GroupByWindowDataPipe(dataset,
self._element_to_bucket_id,
self._window_size_func,
wrapper_class=wrapper_class)
def __iter__(self):
yield from self._group_dp
def _element_to_bucket_id(self, elem):
seq_len = self.elem_length_func(elem)
bucket_id = 0
for (i, b) in enumerate(self.bucket_boundaries):
if seq_len < b:
bucket_id = i
break
return bucket_id
def _window_size_func(self, bucket_id):
return self.bucket_batch_sizes[bucket_id]
@functional_datapipe("group_by_window")
class GroupByWindowDataPipe(datapipes.iter.Grouper):
def __init__(
self,
dataset: IterDataPipe,
key_func,
window_size_func,
wrapper_class=None,
):
super().__init__(dataset,
key_func,
keep_key=False,
group_size=None,
drop_remaining=False)
_check_unpickable_fn(window_size_func)
self.dp = dataset
self.window_size_func = window_size_func
if wrapper_class is not None:
_check_unpickable_fn(wrapper_class)
del self.wrapper_class
self.wrapper_class = wrapper_class
def __iter__(self):
for x in self.datapipe:
key = self.group_key_fn(x)
self.buffer_elements[key].append(x)
self.curr_buffer_size += 1
group_size = self.window_size_func(key)
if group_size == len(self.buffer_elements[key]):
result = self.wrapper_class(self.buffer_elements[key])
yield result
self.curr_buffer_size -= len(self.buffer_elements[key])
del self.buffer_elements[key]
if self.curr_buffer_size == self.max_buffer_size:
result_to_yield = self._remove_biggest_key()
if result_to_yield is not None:
result = self.wrapper_class(result_to_yield)
yield result
for key in tuple(self.buffer_elements.keys()):
result = self.wrapper_class(self.buffer_elements.pop(key))
self.curr_buffer_size -= len(result)
yield result
@functional_datapipe("sort")
class SortDataPipe(IterDataPipe):
def __init__(self,
dataset: IterDataPipe,
buffer_size: int = 500,
key_func=None,
reverse=False) -> None:
if key_func is not None:
_check_unpickable_fn(key_func)
self.buffer_size = buffer_size
super().__init__()
self.dp = dataset
self._buffer = []
self.key_func = key_func
self.reverse = reverse
def __iter__(self):
for elem in self.dp:
self._buffer.append(elem)
if len(self._buffer) >= self.buffer_size:
self._buffer.sort(key=self.key_func, reverse=self.reverse)
for x in self._buffer:
yield x
del self._buffer
self._buffer = []
# The sample left over
self._buffer.sort(key=self.key_func, reverse=self.reverse)
for x in self._buffer:
yield x
del self._buffer
self._buffer = []
@functional_datapipe("dynamic_batch")
class DynamicBatchDataPipe(IterDataPipe):
def __init__(self, dataset: IterDataPipe, window_class,
wrapper_class) -> None:
_check_unpickable_fn(window_class)
_check_unpickable_fn(wrapper_class)
super().__init__()
self.dp = dataset
assert window_class is not None
assert wrapper_class is not None
self.window_class = window_class
self._buffer = []
self._wrappr_class = wrapper_class
def __iter__(self):
for elem in self.dp:
if not self.window_class(elem, len(self._buffer)):
self._buffer.append(elem)
else:
if len(self._buffer) > 0:
yield self._wrappr_class(self._buffer)
del self._buffer
self._buffer = [elem]
if len(self._buffer) > 0:
yield self._wrappr_class(self._buffer)
del self._buffer
self._buffer = []
@functional_datapipe("prefetch")
class PrefetchDataPipe(IterDataPipe):
"""Performs prefetching"""
def __init__(
self,
dataset: IterDataPipe,
buffer_size: int = 500,
):
# TODO(Mddct): support multiprocessing pool with shared-memory to
# prefetch
super().__init__()
self.dp = dataset
self._iter = None
self._prefetch_buffer_size = buffer_size
self._buffer = None
if self._prefetch_buffer_size > 0:
self._buffer = collections.deque(maxlen=self._prefetch_buffer_size)
def __iter__(self):
if self._prefetch_buffer_size > 0:
if self._iter is None:
self._iter = iter(self.dp)
assert self._buffer is not None
while True:
if len(self._buffer) <= self._prefetch_buffer_size // 2:
while len(self._buffer) < self._prefetch_buffer_size:
try:
self._buffer.append(next(self._iter))
except StopIteration:
if len(self._buffer) != 0:
while len(self._buffer) > 0:
yield self._buffer.popleft()
self._iter = None
return
while len(self._buffer) > self._prefetch_buffer_size // 2:
elem = self._buffer.popleft()
yield elem
else:
yield from self.dp
@functional_datapipe("repeat")
class RepeatDatapipe(IterDataPipe):
def __init__(self, dataset: IterDataPipe, count: int = -1):
super().__init__()
self.dp = dataset
self.count = count
def __iter__(self):
if self.count == 1:
yield from self.dp
return
i = 0
while self.count < 0 or i < self.count:
for elem in self.dp:
new_elem = copy.copy(elem)
yield new_elem
i += 1
@functional_datapipe("shard")
class ShardDataPipe(ShardingFilterIterDataPipe):
def __init__(self, dataset: IterDataPipe, partition: bool = False):
super().__init__(dataset, None)
self.partition = partition
self.dp = dataset
def apply_sharding(self, num_of_instances: int, instance_id: int,
sharding_group: SHARDING_PRIORITIES):
if self.partition:
return super().apply_sharding(num_of_instances, instance_id,
sharding_group)
else:
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
info = torch.utils.data.get_worker_info()
if info is None:
self.num_of_instances = 1
self.instance_id = 0
else:
n_workers_per_device = info.num_workers
self.num_of_instances = n_workers_per_device
self.instance_id = info.id
@functional_datapipe("interleave")
class InterlaveDataPipe(IterDataPipe):
def __init__(
self,
source_datapipes: List[IterDataPipe],
weights: Optional[List[float]] = None,
seed=2027,
):
super().__init__()
self.rng = np.random.default_rng(seed)
self.source_datapipes = source_datapipes
self.weights = weights
if weights is None:
self.weights = [1 / len(self.source_datapipes)] * len(
self.source_datapipes)
else:
self.weights = [weight / sum(weights) for weight in weights]
self.iters = None
def __iter__(self):
weights = copy.deepcopy(self.weights)
exhausted = len(self.source_datapipes) * [False]
if self.iters is None:
self.iters = [(i, iter(d))
for i, d in enumerate(self.source_datapipes)]
while True:
# TODO(Mddct): rng
index_iter = self.rng.choice(self.iters, p=weights)
i, ite = index_iter
try:
elem = next(ite)
yield elem
except StopIteration:
weights[i] = 0.
exhausted[i] = True
if all(exhausted):
return
weights = [weight / sum(weights) for weight in weights]
class TextLineDataPipe(IterDataPipe):
""" Streamming Text line
"""
def __init__(self, filenames, mode='r'):
super().__init__()
_dp = datapipes.iter.FileLister(filenames)
_dp = datapipes.iter.FileOpener(_dp, mode=mode)
self.dp = _dp
def __iter__(self):
for fname, stream in self.dp:
for line in stream:
line = line.strip('\n')
yield {"file_name": fname, "line": line}
stream.close()
@functional_datapipe("tar_file_and_group")
class TarsDataPipe(IterDataPipe):
""" Decode wenet's tar , yield {'txt': "...", "raw": "..."}
"""
def __init__(self, dataset: IterDataPipe) -> None:
super().__init__()
self.dp = dataset
def __iter__(self):
from wenet.dataset.processor import AUDIO_FORMAT_SETS
for sample in self.dp:
assert 'file_name' in sample
assert 'line' in sample
assert 'stream' in sample
try:
with tarfile.open(fileobj=sample['stream'],
mode="r:*") as stream:
prev_prefix = None
example = {
'file_name': sample['file_name'],
'tar_file_name': sample['line']
}
valid = True
for tarinfo in stream:
name = tarinfo.name
pos = name.rfind('.')
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1:]
if prev_prefix is not None and prefix != prev_prefix:
example['key'] = prev_prefix
if valid:
yield example
example = {
'file_name': sample['file_name'],
'tar_file_name': sample['line']
}
valid = True
with stream.extractfile(tarinfo) as file_obj:
try:
if postfix == 'txt':
example['txt'] = file_obj.read().decode(
'utf8').strip()
elif postfix in AUDIO_FORMAT_SETS:
example['wav'] = file_obj.read()
else:
example[postfix] = file_obj.read()
except Exception as ex:
valid = False
logging.warning(
'error to parse {}'.format(name))
prev_prefix = prefix
if prev_prefix is not None:
example['key'] = prev_prefix
yield example
except Exception as ex:
msg = 'In tar_file_and_group: {} when processing {}'.format(
ex, sample['line'])
logging.warning(msg)
finally:
if 'process' in sample:
sample['process'].communicate()
sample['stream'].close()
class WenetRawDatasetSource(IterDataPipe):
def __init__(self,
filenames: str,
prefetch: int = 500,
partition: bool = True,
shuffle: bool = False,
shuffle_size: int = 10000,
cycle: int = 1) -> None:
super().__init__()
self.dp = TextLineDataPipe(filenames)
if shuffle:
self.dp = self.dp.shuffle(buffer_size=shuffle_size)
self.dp = self.dp.repeat(cycle).prefetch(prefetch)
self.dp = self.dp.shard(partition)
def __iter__(self):
for d in self.dp:
yield d
class WenetTarShardDatasetSource(IterDataPipe):
def __init__(self,
filenames: str,
prefetch: int = 500,
partition: bool = True,
shuffle: bool = False,
shuffle_size: int = 10000,
cycle: int = 1) -> None:
super().__init__()
self.dp = TextLineDataPipe(filenames)
if shuffle:
self.dp = self.dp.shuffle(buffer_size=shuffle_size)
self.dp = self.dp.repeat(cycle)
self.dp = self.dp.shard(partition).map_ignore_error(
parse_url).tar_file_and_group().prefetch(prefetch)
def __iter__(self):
for d in self.dp:
yield d
|