File size: 8,468 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import random

import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset

import wenet.dataset.deprecated.processor as processor
from wenet.text.base_tokenizer import BaseTokenizer
from wenet.utils.file_utils import read_lists


class Processor(IterableDataset):

    def __init__(self, source, f, *args, **kw):
        assert callable(f)
        self.source = source
        self.f = f
        self.args = args
        self.kw = kw

    def set_epoch(self, epoch):
        self.source.set_epoch(epoch)

    def __iter__(self):
        """ Return an iterator over the source dataset processed by the
            given processor.
        """
        assert self.source is not None
        assert callable(self.f)
        return self.f(iter(self.source), *self.args, **self.kw)

    def apply(self, f):
        assert callable(f)
        return Processor(self, f, *self.args, **self.kw)


class DistributedSampler:

    def __init__(self, shuffle=True, partition=True, split_num=1):
        self.epoch = -1
        self.update()
        self.shuffle = shuffle
        self.partition = partition
        self.split_num = split_num

    def update(self):
        assert dist.is_available()
        if dist.is_initialized():
            self.rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        else:
            self.rank = 0
            self.world_size = 1
        worker_info = torch.utils.data.get_worker_info()
        if worker_info is None:
            self.worker_id = 0
            self.num_workers = 1
        else:
            self.worker_id = worker_info.id
            self.num_workers = worker_info.num_workers
        return dict(rank=self.rank,
                    world_size=self.world_size,
                    worker_id=self.worker_id,
                    num_workers=self.num_workers)

    def set_epoch(self, epoch):
        self.epoch = epoch

    def split_data(self, total_num):
        data = list(range(total_num))
        sub_epoch = self.epoch + 1
        full_epoch = sub_epoch // self.split_num
        num_per_sub_epochs = total_num // self.split_num
        random.Random(full_epoch).shuffle(data)

        split_index = sub_epoch - full_epoch * self.split_num
        begin = split_index * num_per_sub_epochs
        end = (begin + num_per_sub_epochs 
                if (split_index + 1) < self.split_num else
                total_num)
        
        # print(f'begin: {begin}, end: {end}, world_size: {self.world_size}')
        return data[begin:end]

    def sample(self, data, split_num=1):
        """ Sample data according to rank/world_size/num_workers

            Args:
                data(List): input data list

            Returns:
                List: data list after sample
        """
        if self.split_num == 1:
            data = list(range(len(data)))
        else:
            data = self.split_data(len(data))
        # TODO(Binbin Zhang): fix this
        # We can not handle uneven data for CV on DDP, so we don't
        # sample data by rank, that means every GPU gets the same
        # and all the CV data
        if self.partition:
            if self.shuffle:
                random.Random(self.epoch).shuffle(data)
            data = data[self.rank::self.world_size]
            # print(f'num dataset: {len(data)}')
        data = data[self.worker_id::self.num_workers]
        self.epoch += 1
        return data


class DataList(IterableDataset):

    def __init__(self, lists, shuffle=True, partition=True, split_num=1):
        self.lists = lists
        self.sampler = DistributedSampler(shuffle, partition, split_num)

    def set_epoch(self, epoch):
        self.sampler.set_epoch(epoch)

    def __iter__(self):
        sampler_info = self.sampler.update()
        indexes = self.sampler.sample(self.lists)
        for index in indexes:
            # yield dict(src=src)
            data = dict(src=self.lists[index])
            data.update(sampler_info)
            yield data


def Dataset(data_type,
            data_list_file,
            tokenizer: BaseTokenizer,
            conf,
            partition=True):
    """ Construct dataset from arguments

        We have two shuffle stage in the Dataset. The first is global
        shuffle at shards tar/raw file level. The second is global shuffle
        at training samples level.

        Args:
            data_type(str): raw/shard
            bpe_model(str): model for english bpe part
            partition(bool): whether to do data partition in terms of rank
    """
    assert data_type in ['raw', 'shard', 'shard_full_data']
    lists = read_lists(data_list_file)
    shuffle = conf.get('shuffle', True)
    split_num = conf.get('split_num', 1)
    dataset = DataList(lists, shuffle=shuffle, partition=partition, split_num=split_num)
    if data_type == 'shard':
        dataset = Processor(dataset, processor.url_opener)
        dataset = Processor(dataset, processor.tar_file_and_group)
    elif data_type == 'shard_full_data':
        dataset = Processor(dataset, processor.url_opener)
        dataset = Processor(dataset, processor.tar_file_and_group_full_data)
    else:
        dataset = Processor(dataset, processor.parse_raw)

    speaker_conf = conf.get('speaker_conf', None)
    if speaker_conf is not None:
        dataset = Processor(dataset, processor.parse_speaker, **speaker_conf)
    
    if conf.get('eod_id', None) is not None:
        tokenizer.eod_id = conf['eod_id']
    # prompt dict
    from gxl_ai_utils.utils import utils_file
    global_prompt_dict = utils_file.load_dict_from_yaml('conf/prompt_stage4.yaml')
    dataset = Processor(dataset, processor.tokenize, tokenizer,  
                        global_prompt_dict=global_prompt_dict)
    filter_conf = conf.get('filter_conf', {})
    dataset = Processor(dataset, processor.filter, **filter_conf)

    resample_conf = conf.get('resample_conf', {})
    dataset = Processor(dataset, processor.resample, **resample_conf)

    speed_perturb = conf.get('speed_perturb', False)
    if speed_perturb:
        dataset = Processor(dataset, processor.speed_perturb)

    feats_type = conf.get('feats_type', 'fbank')
    assert feats_type in ['fbank', 'mfcc', 'log_mel_spectrogram']
    if feats_type == 'fbank':
        fbank_conf = conf.get('fbank_conf', {})
        dataset = Processor(dataset, processor.compute_fbank, **fbank_conf)
    elif feats_type == 'mfcc':
        mfcc_conf = conf.get('mfcc_conf', {})
        dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf)
    elif feats_type == 'log_mel_spectrogram':
        log_mel_spectrogram_conf = conf.get('log_mel_spectrogram_conf', {})
        dataset = Processor(dataset, processor.compute_log_mel_spectrogram,
                            **log_mel_spectrogram_conf)

    spec_aug = conf.get('spec_aug', True)
    spec_sub = conf.get('spec_sub', False)
    spec_trim = conf.get('spec_trim', False)
    if spec_aug:
        spec_aug_conf = conf.get('spec_aug_conf', {})
        dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf)
    if spec_sub:
        spec_sub_conf = conf.get('spec_sub_conf', {})
        dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf)
    if spec_trim:
        spec_trim_conf = conf.get('spec_trim_conf', {})
        dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf)

    if shuffle:
        shuffle_conf = conf.get('shuffle_conf', {})
        dataset = Processor(dataset, processor.shuffle, **shuffle_conf)

    sort = conf.get('sort', True)
    if sort:
        sort_conf = conf.get('sort_conf', {})
        dataset = Processor(dataset, processor.sort, **sort_conf)

    batch_conf = conf.get('batch_conf', {})
    dataset = Processor(dataset, processor.batch, **batch_conf)
    dataset = Processor(dataset, processor.padding)
    return dataset