Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,866 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 |
# Copyright (c) 2021 microsoft
# 2023 Alan ([email protected])
# -----------------------------------------------------------------------------
# Licensed under the MIT License (MIT). See LICENSE in the repo root for
# license information.
# -----------------------------------------------------------------------------
import logging
import torch
import torch.nn as nn
from typing import Dict, List
import wenet.finetune.lora.layers as lora
def get_nested_attr(module, attr_path):
attrs = attr_path.split('.')
for attr in attrs:
if hasattr(module, attr):
module = getattr(module, attr)
else:
return None
return module
def inject_lora(module, lora_config):
lora_rank = lora_config["lora_rank"]
lora_alpha = lora_config["lora_alpha"]
lora_dropout = lora_config["lora_dropout"]
for lora_attr in lora_config["lora_list"]:
if hasattr(module, lora_attr):
submodule = getattr(module, lora_attr)
n_feat = submodule.in_features
lora_linear = lora.Linear(n_feat, n_feat, r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout)
setattr(module, lora_attr, lora_linear)
def inject_lora_to_model(model, lora_config):
lora_modules = []
for module in lora_config["lora_modules"]:
submodule = get_nested_attr(model, module)
for layer in submodule:
lora_modules.append(layer)
updated_lora_modules = []
for i in range(len(lora_modules)):
for attn_attr in lora_config["lora_attn_attr"]:
if hasattr(lora_modules[i], attn_attr):
updated_lora_modules.append(getattr(lora_modules[i], attn_attr))
for lora_module in updated_lora_modules:
inject_lora(lora_module, lora_config)
def mark_only_lora_as_trainable(model: nn.Module, bias: str = 'none') -> None:
logging.info('freezing all params except lora module.')
for n, p in model.named_parameters():
if 'lora_' not in n:
p.requires_grad = False
if bias == 'none':
return
elif bias == 'all':
for n, p in model.named_parameters():
if 'bias' in n:
p.requires_grad = True
elif bias == 'lora_only':
for m in model.modules():
if isinstance(m, lora.LoRALayer) and \
hasattr(m, 'bias') and \
m.bias is not None:
m.bias.requires_grad = True
else:
raise NotImplementedError
def lora_state_dict(model: nn.Module,
bias: str = 'none') -> Dict[str, torch.Tensor]:
my_state_dict = model.state_dict()
if bias == 'none':
return {k: my_state_dict[k] for k in my_state_dict if 'lora_' in k}
elif bias == 'all':
return {
k: my_state_dict[k]
for k in my_state_dict if 'lora_' in k or 'bias' in k
}
elif bias == 'lora_only':
to_return = {}
for k in my_state_dict:
if 'lora_' in k:
to_return[k] = my_state_dict[k]
bias_name = k.split('lora_')[0] + 'bias'
if bias_name in my_state_dict:
to_return[bias_name] = my_state_dict[bias_name]
return to_return
else:
raise NotImplementedError
def get_record_gradient_hook(model, record_dict):
def record_gradient_hook(grad):
for n, p in model.named_parameters():
if p.requires_grad and p.grad is not None:
if n not in record_dict:
record_dict[n] = p.grad.cpu()
else:
record_dict[n] += p.grad.cpu()
p.grad = None
return grad
return record_gradient_hook
def estimate_gradient(
model, dataloader, max_iters: int = 8,
device: torch.device = torch.device("cpu")
) -> Dict[str, List[torch.Tensor]]:
r"""
Estimate the gradient of the model on the given dataset
"""
logging.info("Estimating gradient layer by layer, time needed")
model.train()
named_grads = {}
hooks = []
requires_grad_states = {}
for name, param in model.named_parameters():
requires_grad_states[name] = param.requires_grad
param.requires_grad = True
hook = param.register_hook(get_record_gradient_hook(model, named_grads))
hooks.append(hook)
num = 0
for _, batch_dict in enumerate(dataloader):
num += 1
if max_iters is not None and num >= max_iters:
break
outputs = model(batch_dict, device)
outputs['loss'].backward()
get_record_gradient_hook(model, named_grads)(None) # get gradient of last layer
# make sure the gradient is cleared
for n, p in model.named_parameters():
if p.grad is not None:
p.grad = None
for n, _ in named_grads.items():
named_grads[n] /= num
for hook in hooks:
hook.remove()
# recover original requires_grad states
for name, param in model.named_parameters():
param.requires_grad = requires_grad_states[name]
torch.cuda.empty_cache()
return named_grads
@torch.no_grad()
def reinit_lora_modules(name, module, init_config, **kwargs):
r"""Refer to https://github.com/Outsider565/LoRA-GA/blob/
c185846309ea9012d0bcd46ebd30347dda1c592c/run_exp.py#L67
Reinitialize the lora model with the given configuration.
"""
import math
lora_r = min(module.lora_A.shape)
a_dim = max(module.lora_A.shape)
b_dim = max(module.lora_B.shape)
if init_config.mode == "simple":
match init_config.lora_A:
case "gaussian":
torch.nn.init.normal_(
module.lora_A, mean=0.0,
std=init_config.lora_A_std
)
case "kaiming":
# https://github.com/microsoft/LoRA/blob/a0a92e0f26c067cf94747bdbf1ce73793fa44d19/loralib/layers.py#L124
torch.nn.init.kaiming_uniform_(module.lora_A,
a=math.sqrt(5))
case "fan_out_kaiming":
torch.nn.init.kaiming_normal_(
module.lora_A, mode="fan_out"
)
case "xavier":
torch.nn.init.xavier_normal_(module.lora_A)
case "zeros":
torch.nn.init.zeros_(module.lora_A)
case "unit":
torch.nn.init.normal_(
module.lora_A, mean=0.0,
std=1.0 / (a_dim**0.5)
)
case "orthogonal":
torch.nn.init.orthogonal_(module.lora_A)
case _:
raise ValueError(
f"Unknown lora_A initialization: {init_config.lora_A}"
)
match init_config.lora_B:
case "gaussian":
torch.nn.init.normal_(
module.lora_B, mean=0.0,
std=init_config.lora_B_std
)
case "kaiming":
torch.nn.init.kaiming_normal_(module.lora_B)
case "fan_out_kaiming":
torch.nn.init.kaiming_normal_(
module.lora_B, mode="fan_out"
)
case "xavier":
torch.nn.init.xavier_normal_(module.lora_B)
case "zeros":
torch.nn.init.zeros_(module.lora_B)
case "unit":
torch.nn.init.normal_(
module.lora_B, mean=0.0,
std=1.0 / (b_dim**0.5)
)
case "orthogonal":
torch.nn.init.orthogonal_(module.lora_B)
case _:
raise ValueError(
f"Unknown lora_B initialization: {init_config.lora_B}"
)
if getattr(init_config, 'scale', '') == "stable":
gamma = init_config.stable_gamma
m, n = module.weight.shape
module.lora_B.data *= (m**0.25) / gamma**0.5
module.lora_A.data *= (n**0.25) / gamma**0.5
elif init_config.mode == "svd":
U, S, V = torch.svd_lowrank(module.weight.float(), q=4 * lora_r,
niter=4)
V = V.T
m, n = module.weight.shape
if init_config.scale == "default":
S = S / module.scaling
module.lora_B = torch.nn.Parameter(
(U[:, :lora_r] * torch.sqrt(S[:lora_r])).contiguous()
)
module.lora_A = torch.nn.Parameter(
(V[:lora_r, :].T * torch.sqrt(S[:lora_r])).T.contiguous()
)
elif init_config.scale == "stable":
gamma = init_config.stable_gamma
module.lora_B = torch.nn.Parameter(
(U[:, :lora_r] * (m**0.25) / gamma**0.5).contiguous()
)
module.lora_A = torch.nn.Parameter(
(V[:lora_r, :] * (n**0.25) / gamma**0.5).contiguous()
)
elif init_config.scale == "unit":
module.lora_B = torch.nn.Parameter((U[:, :lora_r]).contiguous())
module.lora_A = torch.nn.Parameter((V[:lora_r, :]).contiguous())
elif init_config.scale == "normalized":
S_sum = S[:lora_r].sum()
module.lora_B = torch.nn.Parameter(
(U[:, :lora_r] * torch.sqrt(S[:lora_r])
/ torch.sqrt(S_sum) * lora_r**0.5).contiguous()
)
module.lora_A = torch.nn.Parameter(
(V[:lora_r, :].T * torch.sqrt(S[:lora_r])
/ torch.sqrt(S_sum) * lora_r**0.5).T.contiguous()
)
elif init_config.mode == "gradient":
named_grad = kwargs["named_grads"]
grad_name = name + ".weight"
grads = named_grad[grad_name]
U, S, V = torch.svd_lowrank(grads.cuda().float(), q=4 * lora_r, niter=4)
V = V.T
# set direction
if init_config.direction == "ArBr":
B = U[:, 0 : 2 * lora_r : 2]
A = V[1 : 2 * lora_r : 2, :]
elif init_config.direction == "A2rBr":
B = U[:, :lora_r]
A = V[lora_r : 2 * lora_r, :]
elif init_config.direction == "ArB2r":
B = U[:, lora_r : 2 * lora_r]
A = V[:lora_r, :]
scaling_factor = module.scaling
if init_config.scale == "gd":
A = A / scaling_factor
B = B / scaling_factor
elif init_config.scale == "unit":
# Because A,B is orthogonal, do not need to scale
pass
elif init_config.scale == "stable":
m, n = grads.shape
# m: feature_out, n: feature_in
# the scale of output is only related to the feature_out
gamma = init_config.stable_gamma
B = B * m**0.25 / gamma**0.5
A = A * m**0.25 / gamma**0.5
elif init_config.scale == "weightS":
_, S, _ = torch.svd_lowrank(module.weight.float(), q=4 * lora_r,
niter=4)
S = S / module.scaling
avg_s = torch.sqrt(S[:lora_r]).mean().to(A.device)
B = B * avg_s
A = A * avg_s
module.lora_B = torch.nn.Parameter(B.contiguous().cuda())
module.lora_A = torch.nn.Parameter(A.contiguous().cuda())
with torch.no_grad():
# consider dtype not in init_config
if not hasattr(init_config, "dtype"):
pass
elif init_config.dtype == "bf16":
module.lora_A.data = module.lora_A.data.to(torch.bfloat16)
module.lora_B.data = module.lora_B.data.to(torch.bfloat16)
elif init_config.dtype == "fp32":
module.lora_A.data = module.lora_A.data.to(torch.float32)
module.lora_B.data = module.lora_B.data.to(torch.float32)
# If lora_A@lora_B is not zero,
# then we need to subtract lora_A@lora_B from the original weight matrix
offset = (
module.lora_B @ module.lora_A
).to(module.weight.data.device)
scaling_factor = module.scaling
offset *= scaling_factor
if hasattr(init_config, "norm_clip") and init_config.norm_clip:
# for numerical stability,
# offset's largest value must be less then weight's largest value
ratio = torch.max(torch.abs(module.weight.data)) / torch.max(
torch.abs(offset)
)
if ratio < 1:
offset *= ratio
module.lora_A.data *= ratio**0.5
module.lora_B.data *= ratio**0.5
logging.warning(f"Clipping offset by {ratio}")
try:
module.weight.data -= offset
except Exception as e:
logging.warning(f"{e}")
breakpoint()
|