Spaces:
Running
on
Zero
Running
on
Zero
File size: 8,484 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from typing import Dict, List, Optional, Union
import torch
from wenet.LLM.decoder import DecoderOnly
from wenet.LLM.sampler import sampler
from wenet.utils.common import IGNORE_ID, th_accuracy
from wenet.utils.mask import make_pad_mask, subsequent_mask
class CausalLM(torch.nn.Module):
def __init__(
self,
vocab_size: int,
decoder: DecoderOnly,
special_tokens: dict,
tie_word_embedding: bool = False,
linear_bias: bool = False,
ignore_id: int = IGNORE_ID,
lsm_weight: float = 0.0,
reduction: str = 'mean',
) -> None:
super().__init__()
del special_tokens
self.embed = torch.nn.Embedding(vocab_size, decoder.hidden_size)
self.out = torch.nn.Linear(decoder.hidden_size,
vocab_size,
bias=linear_bias)
self.decoder = decoder
self.vocab_size = vocab_size
self.criterion_att = torch.nn.CrossEntropyLoss(
ignore_index=ignore_id,
label_smoothing=lsm_weight,
reduction=reduction,
)
self.tie_word_embedding = tie_word_embedding
self.ignore_id = ignore_id
@torch.jit.unused
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
""" Forward for training
"""
text = batch['feats'].to(device)
target = batch['target'].to(device)
text_length = batch['feats_lengths'].to(device)
mask = ~make_pad_mask(text_length, max_len=text.size(1)).unsqueeze(
1) # (B,1,L)
causal_mask = subsequent_mask(
mask.size(-1), device=mask.device).unsqueeze(0) # (1,L,L)
att_mask = causal_mask & mask # (B, L, L)
embeding = self.embed(text)
decoder_out = self.out(self.decoder(embeding,
att_mask)[0]) # (B, L, vocab_size)
loss = self.criterion_att(decoder_out.view(-1, self.vocab_size),
target.view(-1))
acc = th_accuracy(decoder_out.view(-1, self.vocab_size),
target,
ignore_label=self.ignore_id)
return {
"loss": loss,
"ppl": torch.exp(loss.detach()),
"th_accuracy": acc
}
def tie_or_clone_weights(self, jit_mode: bool):
if not self.tie_word_embedding:
return
if jit_mode:
self.out.weight = torch.nn.Parameter(self.embed.weight.clone())
else:
self.out.weight = self.embed.weight
# TODO(Mddct): whether to deal bias for other llm model
@torch.jit.unused
@torch.inference_mode()
def generate(
self,
prompts_tokens: List[List[int]],
device: torch.device,
stop_tokens: List[int],
dtype: torch.dtype = torch.float32,
output_len: int = 100,
temperature: Union[float, None] = 0.95,
top_p: float = 1.0,
top_k: int = 100,
) -> List[List[int]]:
"""Generates responses for given prompts using Gemma model."""
# If a single prompt is provided, treat it as a batch of 1.
batch_size = len(prompts_tokens)
min_prompt_len = min(len(p) for p in prompts_tokens)
max_prompt_len = max(len(p) for p in prompts_tokens)
max_seq_len = max_prompt_len + output_len
assert max_seq_len <= self.decoder.pos_enc.max_len
# build KV caches
kv_caches = []
for _ in range(len(self.decoder.decoders)):
size = (batch_size, 0, self.decoder.n_kv_head,
self.decoder.head_dim)
k_cache = torch.zeros(size=size, dtype=dtype, device=device)
v_cache = torch.zeros(size=size, dtype=dtype, device=device)
kv_caches.append((k_cache, v_cache))
# prepare inputs
token_ids_tensor = torch.full((batch_size, max_seq_len),
IGNORE_ID,
dtype=torch.int64,
device=device)
input_token_ids_tensor = torch.full((batch_size, min_prompt_len),
IGNORE_ID,
dtype=torch.int64,
device=device)
# right padding
for i, p in enumerate(prompts_tokens):
token_ids_tensor[i, :len(p)] = torch.tensor(p)
input_token_ids_tensor[i, :min_prompt_len] = torch.tensor(
p[:min_prompt_len])
prompt_mask_tensor = token_ids_tensor != IGNORE_ID
input_positions_tensor = torch.arange(0,
min_prompt_len,
dtype=torch.int64).to(device)
mask_tensor = torch.ones((1, 1, max_seq_len, max_seq_len),
dtype=torch.bool)
mask_tensor = torch.tril(mask_tensor).to(device)
curr_mask_tensor = mask_tensor.index_select(2, input_positions_tensor)
att_mask = curr_mask_tensor.squeeze(
1)[:, :min_prompt_len, :min_prompt_len]
output_positions_tensor = torch.LongTensor([min_prompt_len - 1
]).to(device)
temperatures_tensor = None if not temperature else torch.FloatTensor(
[temperature] * batch_size).to(device)
top_ps_tensor = torch.FloatTensor([top_p] * batch_size).to(device)
top_ks_tensor = torch.LongTensor([top_k] * batch_size).to(device)
output_index = torch.tensor(min_prompt_len,
dtype=torch.int64).to(device)
input_token_embeding = self.embed(input_token_ids_tensor)
offset = torch.tensor([0] * len(prompts_tokens)).to(device)
input_offset = offset
stop_tokens_tensor = torch.tensor(stop_tokens, device=device)
# Prefill up to min_prompt_len tokens, then treat other prefill as
# decode and ignore output.
for i in range(max_seq_len - min_prompt_len):
decoder_out, kv_caches, = self.decoder(
input_token_embeding,
att_mask,
input_offset,
kv_caches,
)
decoder_out = self.out(decoder_out)
decoder_out = decoder_out.index_select(1, output_positions_tensor)
next_token_ids = sampler(
decoder_out,
temperatures_tensor,
top_ps_tensor,
top_ks_tensor,
)
curr_prompt_mask = prompt_mask_tensor.index_select(
1, output_index).squeeze(dim=1)
curr_token_ids = token_ids_tensor.index_select(
1, output_index).squeeze(dim=1)
output_token_ids = torch.where(curr_prompt_mask, curr_token_ids,
next_token_ids).unsqueeze(dim=1)
token_ids_tensor.index_copy_(1, output_index, output_token_ids)
input_token_ids_tensor = output_token_ids
input_token_embeding = self.embed(input_token_ids_tensor)
input_positions_tensor = output_index.unsqueeze(dim=-1)
curr_mask_tensor = mask_tensor.index_select(
2, input_positions_tensor)
att_mask = curr_mask_tensor.squeeze(1)[:, :output_index +
1, :output_index + 1]
output_positions_tensor = torch.tensor(
0, dtype=torch.int64).to(device)
input_offset = offset + output_index.unsqueeze(-1)
output_index = output_index + 1
if all(torch.isin(next_token_ids, stop_tokens_tensor)):
break
token_ids = token_ids_tensor.tolist()
results = []
for i, tokens in enumerate(token_ids):
trimmed_output = tokens[len(prompts_tokens[i]
):len(prompts_tokens[i]) + output_len]
for stop_token in stop_tokens:
try:
eos_index = trimmed_output.index(stop_token)
trimmed_output = trimmed_output[:eos_index]
break
except Exception:
continue
results.append(trimmed_output)
return results
|