Spaces:
Running
on
Zero
Running
on
Zero
File size: 12,899 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
# Copyright (c) 2020 Mobvoi Inc (Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Unility functions for Transformer."""
import math
import time
from typing import List, Tuple
import torch
from torch.nn.utils.rnn import pad_sequence
from whisper.tokenizer import LANGUAGES as WhiserLanguages
WHISPER_LANGS = tuple(WhiserLanguages.keys())
IGNORE_ID = -1
def pad_list(xs: List[torch.Tensor], pad_value: int):
"""Perform padding for the list of tensors.
Args:
xs (List): List of Tensors [(T_1, `*`), (T_2, `*`), ..., (T_B, `*`)].
pad_value (float): Value for padding.
Returns:
Tensor: Padded tensor (B, Tmax, `*`).
Examples:
>>> x = [torch.ones(4), torch.ones(2), torch.ones(1)]
>>> x
[tensor([1., 1., 1., 1.]), tensor([1., 1.]), tensor([1.])]
>>> pad_list(x, 0)
tensor([[1., 1., 1., 1.],
[1., 1., 0., 0.],
[1., 0., 0., 0.]])
"""
max_len = max([len(item) for item in xs])
batchs = len(xs)
ndim = xs[0].ndim
if ndim == 1:
pad_res = torch.zeros(batchs,
max_len,
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 2:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
dtype=xs[0].dtype,
device=xs[0].device)
elif ndim == 3:
pad_res = torch.zeros(batchs,
max_len,
xs[0].shape[1],
xs[0].shape[2],
dtype=xs[0].dtype,
device=xs[0].device)
else:
raise ValueError(f"Unsupported ndim: {ndim}")
pad_res.fill_(pad_value)
for i in range(batchs):
pad_res[i, :len(xs[i])] = xs[i]
return pad_res
def add_blank(ys_pad: torch.Tensor, blank: int,
ignore_id: int) -> torch.Tensor:
""" Prepad blank for transducer predictor
Args:
ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
blank (int): index of <blank>
Returns:
ys_in (torch.Tensor) : (B, Lmax + 1)
Examples:
>>> blank = 0
>>> ignore_id = -1
>>> ys_pad
tensor([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, -1, -1],
[ 7, 8, 9, -1, -1]], dtype=torch.int32)
>>> ys_in = add_blank(ys_pad, 0, -1)
>>> ys_in
tensor([[0, 1, 2, 3, 4, 5],
[0, 4, 5, 6, 0, 0],
[0, 7, 8, 9, 0, 0]])
"""
bs = ys_pad.size(0)
_blank = torch.tensor([blank],
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
_blank = _blank.repeat(bs).unsqueeze(1) # [bs,1]
out = torch.cat([_blank, ys_pad], dim=1) # [bs, Lmax+1]
return torch.where(out == ignore_id, blank, out)
def add_sos_eos(ys_pad: torch.Tensor, sos: int, eos: int,
ignore_id: int) -> Tuple[torch.Tensor, torch.Tensor]:
"""Add <sos> and <eos> labels.
Args:
ys_pad (torch.Tensor): batch of padded target sequences (B, Lmax)
sos (int): index of <sos>
eos (int): index of <eeos>
ignore_id (int): index of padding
Returns:
ys_in (torch.Tensor) : (B, Lmax + 1)
ys_out (torch.Tensor) : (B, Lmax + 1)
Examples:
>>> sos_id = 10
>>> eos_id = 11
>>> ignore_id = -1
>>> ys_pad
tensor([[ 1, 2, 3, 4, 5],
[ 4, 5, 6, -1, -1],
[ 7, 8, 9, -1, -1]], dtype=torch.int32)
>>> ys_in,ys_out=add_sos_eos(ys_pad, sos_id , eos_id, ignore_id)
>>> ys_in
tensor([[10, 1, 2, 3, 4, 5],
[10, 4, 5, 6, 11, 11],
[10, 7, 8, 9, 11, 11]])
>>> ys_out
tensor([[ 1, 2, 3, 4, 5, 11],
[ 4, 5, 6, 11, -1, -1],
[ 7, 8, 9, 11, -1, -1]])
"""
_sos = torch.tensor([sos],
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
_eos = torch.tensor([eos],
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
ys = [y[y != ignore_id] for y in ys_pad] # parse padded ys
ys_in = [torch.cat([_sos, y], dim=0) for y in ys]
ys_out = [torch.cat([y, _eos], dim=0) for y in ys]
return pad_list(ys_in, eos), pad_list(ys_out, ignore_id)
def add_whisper_tokens(special_tokens, ys_pad: torch.Tensor, ignore_id: int,
tasks: List[str], no_timestamp: bool, langs: List[str],
use_prev: bool) -> Tuple[torch.Tensor, torch.Tensor]:
"""Add whisper-style tokens.
([PREV] -> [previous text tokens or hotwords]).optional --
┌------------------------------------------------------↲
↓
[sot] -> [language id] -> [transcribe] -> [begin time] -> [text tokens] -> [end time] -> ... -> [eot] # noqa
| | |-------> [no timestamps] -> [text tokens] ----------------------↑ # noqa
| | | # noqa
| |--------> [translate] -> [begin time] -> [text tokens] -> [end time] -> ... --->| # noqa
| |-------> [no timestamps] -> [text tokens] --------------------->| # noqa
| | # noqa
|--> [no speech(VAD)] ---------------------------------------------------------------------->| # noqa
Args:
special_tokens: get IDs of special tokens
ignore_id (int): index of padding
no_timestamp (bool): whether to add timestamps tokens
tasks (List[str]): list of task tags
langs (List[str]): list of language tags
Returns:
ys_in (torch.Tensor) : (B, Lmax + ?)
ys_out (torch.Tensor) : (B, Lmax + ?)
"""
assert len(langs) == ys_pad.size(0)
assert len(tasks) == ys_pad.size(0)
if use_prev:
# i.e., hotword list
_prev = [special_tokens["sot_prev"]]
# append hotword list to _prev
# ...
raise NotImplementedError
else:
_prev = []
_sot = []
for task, lang in zip(tasks, langs):
if task == "transcribe":
task_id = special_tokens["transcribe"]
elif task == "translate":
task_id = special_tokens["translate"]
elif task == "vad":
task_id = special_tokens["no_speech"]
else:
if task in special_tokens:
task_id = special_tokens[task]
else:
raise NotImplementedError("unsupported task {}".format(task))
language_id = special_tokens["sot"] + 1 + WHISPER_LANGS.index(lang)
prefix = _prev + [special_tokens["sot"], language_id, task_id]
if task != 'vad':
if no_timestamp:
prefix.append(special_tokens["no_timestamps"])
else:
prefix.append(special_tokens["timestamp_begin"])
# add subsequent tokens
# ...
raise NotImplementedError
elif task == "vad":
prefix.append(special_tokens["no_speech"])
else:
raise NotImplementedError
prefix = torch.tensor(prefix,
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
_sot.append(prefix)
_eot = torch.tensor([special_tokens["eot"]],
dtype=torch.long,
requires_grad=False,
device=ys_pad.device)
ys = [y[y != ignore_id] for y in ys_pad] # parse padded ys
ys_in = [torch.cat([prefix, y], dim=0) for prefix, y in zip(_sot, ys)]
ys_out = [
torch.cat([prefix[1:], y, _eot], dim=0) for prefix, y in zip(_sot, ys)
]
return pad_list(ys_in, special_tokens["eot"]), pad_list(ys_out, ignore_id)
def reverse_pad_list(ys_pad: torch.Tensor,
ys_lens: torch.Tensor,
pad_value: float = -1.0) -> torch.Tensor:
"""Reverse padding for the list of tensors.
Args:
ys_pad (tensor): The padded tensor (B, Tokenmax).
ys_lens (tensor): The lens of token seqs (B)
pad_value (int): Value for padding.
Returns:
Tensor: Padded tensor (B, Tokenmax).
Examples:
>>> x
tensor([[1, 2, 3, 4], [5, 6, 7, 0], [8, 9, 0, 0]])
>>> pad_list(x, 0)
tensor([[4, 3, 2, 1],
[7, 6, 5, 0],
[9, 8, 0, 0]])
"""
r_ys_pad = pad_sequence([(torch.flip(y.int()[:i], [0]))
for y, i in zip(ys_pad, ys_lens)], True,
pad_value)
return r_ys_pad
def th_accuracy(pad_outputs: torch.Tensor, pad_targets: torch.Tensor,
ignore_label: int) -> torch.Tensor:
"""Calculate accuracy.
Args:
pad_outputs (Tensor): Prediction tensors (B * Lmax, D).
pad_targets (LongTensor): Target label tensors (B, Lmax).
ignore_label (int): Ignore label id.
Returns:
torch.Tensor: Accuracy value (0.0 - 1.0).
"""
pad_pred = pad_outputs.view(pad_targets.size(0), pad_targets.size(1),
pad_outputs.size(1)).argmax(2)
mask = pad_targets != ignore_label
numerator = torch.sum(
pad_pred.masked_select(mask) == pad_targets.masked_select(mask))
denominator = torch.sum(mask)
return (numerator / denominator).detach()
def get_subsample(config):
input_layer = config["encoder_conf"]["input_layer"]
assert input_layer in ["conv2d", "conv2d6", "conv2d8"]
if input_layer == "conv2d":
return 4
elif input_layer == "conv2d6":
return 6
elif input_layer == "conv2d8":
return 8
def log_add(*args) -> float:
"""
Stable log add
"""
if all(a == -float('inf') for a in args):
return -float('inf')
a_max = max(args)
lsp = math.log(sum(math.exp(a - a_max) for a in args))
return a_max + lsp
def mask_to_bias(mask: torch.Tensor, dtype: torch.dtype) -> torch.Tensor:
assert mask.dtype == torch.bool
assert dtype in [torch.float32, torch.bfloat16, torch.float16]
mask = mask.to(dtype)
# attention mask bias
# NOTE(Mddct): torch.finfo jit issues
# chunk_masks = (1.0 - chunk_masks) * torch.finfo(dtype).min
mask = (1.0 - mask) * -1.0e+10
return mask
def get_nested_attribute(obj, attr_path):
if isinstance(obj, torch.nn.parallel.DistributedDataParallel):
obj = obj.module
attributes = attr_path.split('.')
for attr in attributes:
obj = getattr(obj, attr)
return obj
def lrs_to_str(lrs: List):
return " ".join(["{:.4e}".format(lr) for lr in lrs])
class StepTimer:
"""Utility class for measuring steps/second."""
def __init__(self, step=0.0):
self.last_iteration = step
self.start()
def start(self):
self.last_time = time.time()
def steps_per_second(self, cur_step, restart=True):
value = ((float(cur_step) - self.last_iteration) /
(time.time() - self.last_time))
if restart:
self.start()
self.last_iteration = float(cur_step)
return value
def tensor_to_scalar(x):
if torch.is_tensor(x):
return x.item()
return x
def is_torch_npu_available() -> bool:
'''
check if torch_npu is available.
torch_npu is a npu adapter of PyTorch
'''
try:
import torch_npu # noqa
return True
except ImportError:
if not torch.cuda.is_available():
print("Module \"torch_npu\" not found. \"pip install torch_npu\" \
if you are using Ascend NPU, otherwise, ignore it")
return False
TORCH_NPU_AVAILABLE = is_torch_npu_available()
|