File size: 13,054 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Xiaoyu Chen, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script is for testing exported onnx encoder and decoder from
export_onnx_gpu.py. The exported onnx models only support batch offline ASR inference.
It requires a python wrapped c++ ctc decoder.
Please install it by following:
https://github.com/Slyne/ctc_decoder.git
"""
from __future__ import print_function

import argparse
import copy
import logging
import os
import sys

import torch
import yaml
from torch.utils.data import DataLoader

from wenet.dataset.dataset import Dataset
from wenet.utils.common import IGNORE_ID
from wenet.utils.config import override_config
from wenet.utils.init_tokenizer import init_tokenizer

import onnxruntime as rt
import multiprocessing
import numpy as np

try:
    from swig_decoders import map_batch, \
        ctc_beam_search_decoder_batch, \
        TrieVector, PathTrie
except ImportError:
    print('Please install ctc decoders first by refering to\n' +
          'https://github.com/Slyne/ctc_decoder.git')
    sys.exit(1)

def get_args():
    parser = argparse.ArgumentParser(description='recognize with your model')
    parser.add_argument('--config', required=True, help='config file')
    parser.add_argument('--test_data', required=True, help='test data file')
    parser.add_argument('--data_type',
                        default='raw',
                        choices=['raw', 'shard'],
                        help='train and cv data type')
    parser.add_argument('--gpu',
                        type=int,
                        default=-1,
                        help='gpu id for this rank, -1 for cpu')
    parser.add_argument('--dict', required=True, help='dict file')
    parser.add_argument('--encoder_onnx',
                        required=True,
                        help='encoder onnx file')
    parser.add_argument('--decoder_onnx',
                        required=True,
                        help='decoder onnx file')
    parser.add_argument('--result_file', required=True, help='asr result file')
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='asr result file')
    parser.add_argument('--mode',
                        choices=[
                            'ctc_greedy_search', 'ctc_prefix_beam_search',
                            'attention_rescoring'
                        ],
                        default='attention_rescoring',
                        help='decoding mode')
    parser.add_argument('--bpe_model',
                        default=None,
                        type=str,
                        help='bpe model for english part')
    parser.add_argument('--override_config',
                        action='append',
                        default=[],
                        help="override yaml config")
    parser.add_argument('--fp16',
                        action='store_true',
                        help='whether to export fp16 model, default false')
    args = parser.parse_args()
    return args

def main():
    args = get_args()
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')
    os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)

    with open(args.config, 'r') as fin:
        configs = yaml.load(fin, Loader=yaml.FullLoader)
    if len(args.override_config) > 0:
        configs = override_config(configs, args.override_config)

    reverse_weight = configs["model_conf"].get("reverse_weight", 0.0)
    special_tokens = configs.get('tokenizer_conf', {}).get('special_tokens', None)
    test_conf = copy.deepcopy(configs['dataset_conf'])
    test_conf['filter_conf']['max_length'] = 102400
    test_conf['filter_conf']['min_length'] = 0
    test_conf['filter_conf']['token_max_length'] = 102400
    test_conf['filter_conf']['token_min_length'] = 0
    test_conf['filter_conf']['max_output_input_ratio'] = 102400
    test_conf['filter_conf']['min_output_input_ratio'] = 0
    test_conf['speed_perturb'] = False
    test_conf['spec_aug'] = False
    test_conf['spec_sub'] = False
    test_conf['spec_trim'] = False
    test_conf['shuffle'] = False
    test_conf['sort'] = False
    test_conf['fbank_conf']['dither'] = 0.0
    test_conf['batch_conf']['batch_type'] = "static"
    test_conf['batch_conf']['batch_size'] = args.batch_size

    tokenizer = init_tokenizer(configs)
    test_dataset = Dataset(args.data_type,
                           args.test_data,
                           tokenizer,
                           test_conf,
                           partition=False)
    test_data_loader = DataLoader(test_dataset, batch_size=None, num_workers=0)

    # Init asr model from configs
    use_cuda = args.gpu >= 0 and torch.cuda.is_available()
    if use_cuda:
        EP_list = ['CUDAExecutionProvider', 'CPUExecutionProvider']
    else:
        EP_list = ['CPUExecutionProvider']

    encoder_ort_session = rt.InferenceSession(args.encoder_onnx,
                                              providers=EP_list)
    decoder_ort_session = None
    if args.mode == "attention_rescoring":
        decoder_ort_session = rt.InferenceSession(args.decoder_onnx,
                                                  providers=EP_list)

    # Load dict
    vocabulary = []
    char_dict = {}
    with open(args.dict, 'r') as fin:
        for line in fin:
            arr = line.strip().split()
            assert len(arr) == 2
            char_dict[int(arr[1])] = arr[0]
            vocabulary.append(arr[0])

    vocab_size = len(char_dict)
    sos = (vocab_size - 1 if special_tokens is None else
           special_tokens.get("<sos>", vocab_size - 1))
    eos = (vocab_size - 1 if special_tokens is None else
           special_tokens.get("<eos>", vocab_size - 1))

    with torch.no_grad(), open(args.result_file, 'w') as fout:
        for _, batch in enumerate(test_data_loader):
            keys = batch['keys']
            feats = batch['feats']
            feats_lengths = batch['feats_lengths']
            feats, feats_lengths = feats.numpy(), feats_lengths.numpy()
            if args.fp16:
                feats = feats.astype(np.float16)
            ort_inputs = {
                encoder_ort_session.get_inputs()[0].name: feats,
                encoder_ort_session.get_inputs()[1].name: feats_lengths
            }
            ort_outs = encoder_ort_session.run(None, ort_inputs)
            encoder_out, encoder_out_lens, ctc_log_probs, \
                beam_log_probs, beam_log_probs_idx = ort_outs
            beam_size = beam_log_probs.shape[-1]
            batch_size = beam_log_probs.shape[0]
            num_processes = min(multiprocessing.cpu_count(), batch_size)
            if args.mode == 'ctc_greedy_search':
                if beam_size != 1:
                    log_probs_idx = beam_log_probs_idx[:, :, 0]
                batch_sents = []
                for idx, seq in enumerate(log_probs_idx):
                    batch_sents.append(seq[0:encoder_out_lens[idx]].tolist())
                hyps = map_batch(batch_sents, vocabulary, num_processes, True,
                                 0)
            elif args.mode in ('ctc_prefix_beam_search',
                               "attention_rescoring"):
                batch_log_probs_seq_list = beam_log_probs.tolist()
                batch_log_probs_idx_list = beam_log_probs_idx.tolist()
                batch_len_list = encoder_out_lens.tolist()
                batch_log_probs_seq = []
                batch_log_probs_ids = []
                batch_start = []  # only effective in streaming deployment
                batch_root = TrieVector()
                root_dict = {}
                for i in range(len(batch_len_list)):
                    num_sent = batch_len_list[i]
                    batch_log_probs_seq.append(
                        batch_log_probs_seq_list[i][0:num_sent])
                    batch_log_probs_ids.append(
                        batch_log_probs_idx_list[i][0:num_sent])
                    root_dict[i] = PathTrie()
                    batch_root.append(root_dict[i])
                    batch_start.append(True)
                score_hyps = ctc_beam_search_decoder_batch(
                    batch_log_probs_seq, batch_log_probs_ids, batch_root,
                    batch_start, beam_size, num_processes, 0, -2, 0.99999)
                if args.mode == 'ctc_prefix_beam_search':
                    hyps = []
                    for cand_hyps in score_hyps:
                        hyps.append(cand_hyps[0][1])
                    hyps = map_batch(hyps, vocabulary, num_processes, False, 0)
            if args.mode == 'attention_rescoring':
                ctc_score, all_hyps = [], []
                max_len = 0
                for hyps in score_hyps:
                    cur_len = len(hyps)
                    if len(hyps) < beam_size:
                        hyps += (beam_size - cur_len) * [(-float("INF"),
                                                          (0, ))]
                    cur_ctc_score = []
                    for hyp in hyps:
                        cur_ctc_score.append(hyp[0])
                        all_hyps.append(list(hyp[1]))
                        if len(hyp[1]) > max_len:
                            max_len = len(hyp[1])
                    ctc_score.append(cur_ctc_score)
                if args.fp16:
                    ctc_score = np.array(ctc_score, dtype=np.float16)
                else:
                    ctc_score = np.array(ctc_score, dtype=np.float32)
                hyps_pad_sos_eos = np.ones(
                    (batch_size, beam_size, max_len + 2),
                    dtype=np.int64) * IGNORE_ID
                r_hyps_pad_sos_eos = np.ones(
                    (batch_size, beam_size, max_len + 2),
                    dtype=np.int64) * IGNORE_ID
                hyps_lens_sos = np.ones((batch_size, beam_size),
                                        dtype=np.int32)
                k = 0
                for i in range(batch_size):
                    for j in range(beam_size):
                        cand = all_hyps[k]
                        l = len(cand) + 2
                        hyps_pad_sos_eos[i][j][0:l] = [sos] + cand + [eos]
                        r_hyps_pad_sos_eos[i][j][0:l] = [sos] + cand[::-1] + [
                            eos
                        ]
                        hyps_lens_sos[i][j] = len(cand) + 1
                        k += 1
                decoder_ort_inputs = {
                    decoder_ort_session.get_inputs()[0].name: encoder_out,
                    decoder_ort_session.get_inputs()[1].name: encoder_out_lens,
                    decoder_ort_session.get_inputs()[2].name: hyps_pad_sos_eos,
                    decoder_ort_session.get_inputs()[3].name: hyps_lens_sos,
                    decoder_ort_session.get_inputs()[-1].name: ctc_score
                }
                if reverse_weight > 0:
                    r_hyps_pad_sos_eos_name = decoder_ort_session.get_inputs(
                    )[4].name
                    decoder_ort_inputs[
                        r_hyps_pad_sos_eos_name] = r_hyps_pad_sos_eos
                best_index = decoder_ort_session.run(None,
                                                     decoder_ort_inputs)[0]
                best_sents = []
                k = 0
                for idx in best_index:
                    cur_best_sent = all_hyps[k:k + beam_size][idx]
                    best_sents.append(cur_best_sent)
                    k += beam_size
                hyps = map_batch(best_sents, vocabulary, num_processes)

            for i, key in enumerate(keys):
                content = hyps[i]
                logging.info('{} {}'.format(key, content))
                fout.write('{} {}\n'.format(key, content))

if __name__ == '__main__':
    main()