File size: 16,512 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#               2023 ASLP@NWPU (authors: He Wang, Fan Yu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet) and
# FunASR(https://github.com/alibaba-damo-academy/FunASR)

from typing import Dict, List, Optional, Tuple

import torch
from wenet.paraformer.cif import Cif, cif_without_hidden

from wenet.paraformer.layers import SanmDecoder, SanmEncoder
from wenet.paraformer.layers import LFR
from wenet.paraformer.search import (paraformer_beam_search,
                                     paraformer_greedy_search)
from wenet.transformer.asr_model import ASRModel
from wenet.transformer.ctc import CTC
from wenet.transformer.decoder import TransformerDecoder
from wenet.transformer.encoder import BaseEncoder
from wenet.transformer.search import (DecodeResult, ctc_greedy_search,
                                      ctc_prefix_beam_search)
from wenet.utils.common import IGNORE_ID, add_sos_eos, th_accuracy
from wenet.utils.mask import make_non_pad_mask


class Predictor(torch.nn.Module):

    def __init__(
        self,
        idim,
        l_order,
        r_order,
        threshold=1.0,
        dropout=0.1,
        smooth_factor=1.0,
        noise_threshold=0.0,
        tail_threshold=0.45,
        residual=True,
        cnn_groups=0,
        smooth_factor2=0.25,
        noise_threshold2=0.01,
        upsample_times=3,
    ):
        super().__init__()
        self.predictor = Cif(idim, l_order, r_order, threshold, dropout,
                             smooth_factor, noise_threshold, tail_threshold,
                             residual, cnn_groups)

        # accurate timestamp branch
        self.smooth_factor2 = smooth_factor2
        self.noise_threshold2 = noise_threshold
        self.upsample_times = upsample_times
        self.noise_threshold2 = noise_threshold2
        self.tp_upsample_cnn = torch.nn.ConvTranspose1d(
            idim, idim, self.upsample_times, self.upsample_times)
        self.tp_blstm = torch.nn.LSTM(idim,
                                      idim,
                                      1,
                                      bias=True,
                                      batch_first=True,
                                      dropout=0.0,
                                      bidirectional=True)
        self.tp_output = torch.nn.Linear(idim * 2, 1)

    def forward(self,
                hidden,
                target_label: Optional[torch.Tensor] = None,
                mask: torch.Tensor = torch.tensor(0),
                ignore_id: int = -1,
                mask_chunk_predictor: Optional[torch.Tensor] = None,
                target_label_length: Optional[torch.Tensor] = None):

        acoustic_embeds, token_num, alphas, cif_peak = self.predictor(
            hidden, target_label, mask, ignore_id, mask_chunk_predictor,
            target_label_length)

        output, (_, _) = self.tp_blstm(
            self.tp_upsample_cnn(hidden.transpose(1, 2)).transpose(1, 2))
        tp_alphas = torch.sigmoid(self.tp_output(output))
        tp_alphas = torch.nn.functional.relu(tp_alphas * self.smooth_factor2 -
                                             self.noise_threshold2)

        mask = mask.repeat(1, self.upsample_times,
                           1).transpose(-1,
                                        -2).reshape(tp_alphas.shape[0], -1)
        mask = mask.unsqueeze(-1)
        tp_alphas = tp_alphas * mask
        tp_alphas = tp_alphas.squeeze(-1)
        tp_token_num = tp_alphas.sum(-1)

        return acoustic_embeds, token_num, alphas, cif_peak, tp_alphas, tp_token_num


class Paraformer(ASRModel):
    """ Paraformer: Fast and Accurate Parallel Transformer for
        Non-autoregressive End-to-End Speech Recognition
        see https://arxiv.org/pdf/2206.08317.pdf

    """

    def __init__(self,
                 vocab_size: int,
                 encoder: BaseEncoder,
                 decoder: TransformerDecoder,
                 predictor: Predictor,
                 ctc: CTC,
                 ctc_weight: float = 0.5,
                 ignore_id: int = -1,
                 lsm_weight: float = 0,
                 length_normalized_loss: bool = False,
                 sampler: bool = True,
                 sampling_ratio: float = 0.75,
                 add_eos: bool = True,
                 special_tokens: Optional[Dict] = None,
                 apply_non_blank_embedding: bool = False):
        assert isinstance(encoder,
                          SanmEncoder), isinstance(decoder, SanmDecoder)
        super().__init__(vocab_size, encoder, decoder, ctc, ctc_weight,
                         IGNORE_ID, 0.0, lsm_weight, length_normalized_loss,
                         None, apply_non_blank_embedding)
        if ctc_weight == 0.0:
            del ctc
        self.predictor = predictor
        self.lfr = LFR()

        assert special_tokens is not None
        self.sos = special_tokens['<sos>']
        self.eos = special_tokens['<eos>']

        self.sampler = sampler
        self.sampling_ratio = sampling_ratio
        if sampler:
            self.embed = torch.nn.Embedding(vocab_size, encoder.output_size())
        # NOTE(Mddct): add eos in tail of labels for predictor
        # eg:
        #    gt:         你 好 we@@ net
        #    labels:     你 好 we@@ net eos
        self.add_eos = add_eos

    @torch.jit.unused
    def forward(
        self,
        batch: Dict,
        device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """Frontend + Encoder + Predictor + Decoder + Calc loss
        """
        speech = batch['feats'].to(device)
        speech_lengths = batch['feats_lengths'].to(device)
        text = batch['target'].to(device)
        text_lengths = batch['target_lengths'].to(device)

        # 0 encoder
        encoder_out, encoder_out_mask = self._forward_encoder(
            speech, speech_lengths)

        # 1 predictor
        ys_pad, ys_pad_lens = text, text_lengths
        if self.add_eos:
            _, ys_pad = add_sos_eos(text, self.sos, self.eos, self.ignore_id)
            ys_pad_lens = text_lengths + 1
        acoustic_embd, token_num, _, _, _, tp_token_num = self.predictor(
            encoder_out, ys_pad, encoder_out_mask, self.ignore_id)

        # 2 decoder with sampler
        # TODO(Mddct): support mwer here
        acoustic_embd = self._sampler(
            encoder_out,
            encoder_out_mask,
            ys_pad,
            ys_pad_lens,
            acoustic_embd,
        )
        # 3 loss
        # 3.1 ctc branhch
        loss_ctc: Optional[torch.Tensor] = None
        if self.ctc_weight != 0.0:
            loss_ctc, _ = self._forward_ctc(encoder_out, encoder_out_mask,
                                            text, text_lengths)
        # 3.2 quantity loss for cif
        loss_quantity = torch.nn.functional.l1_loss(
            token_num,
            ys_pad_lens.to(token_num.dtype),
            reduction='sum',
        )
        loss_quantity = loss_quantity / ys_pad_lens.sum().to(token_num.dtype)
        loss_quantity_tp = torch.nn.functional.l1_loss(
            tp_token_num, ys_pad_lens.to(token_num.dtype),
            reduction='sum') / ys_pad_lens.sum().to(token_num.dtype)

        loss_decoder, acc_att = self._calc_att_loss(encoder_out,
                                                    encoder_out_mask, ys_pad,
                                                    acoustic_embd, ys_pad_lens)
        loss = loss_decoder
        if loss_ctc is not None:
            loss = loss + self.ctc_weight * loss_ctc
        loss = loss + loss_quantity + loss_quantity_tp
        return {
            "loss": loss,
            "loss_ctc": loss_ctc,
            "loss_decoder": loss_decoder,
            "loss_quantity": loss_quantity,
            "loss_quantity_tp": loss_quantity_tp,
            "th_accuracy": acc_att,
        }

    def _calc_att_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_mask: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_emb: torch.Tensor,
        ys_pad_lens: torch.Tensor,
        infos: Dict[str, List[str]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        decoder_out, _, _ = self.decoder(encoder_out, encoder_mask, ys_pad_emb,
                                         ys_pad_lens)
        loss_att = self.criterion_att(decoder_out, ys_pad)
        acc_att = th_accuracy(decoder_out.view(-1, self.vocab_size),
                              ys_pad,
                              ignore_label=self.ignore_id)
        return loss_att, acc_att

    @torch.jit.unused
    def _sampler(self, encoder_out, encoder_out_mask, ys_pad, ys_pad_lens,
                 pre_acoustic_embeds):
        device = encoder_out.device
        B, _ = ys_pad.size()

        tgt_mask = make_non_pad_mask(ys_pad_lens)
        # zero the ignore id
        ys_pad = ys_pad * tgt_mask
        ys_pad_embed = self.embed(ys_pad)  # [B, T, L]
        with torch.no_grad():
            decoder_out, _, _ = self.decoder(encoder_out, encoder_out_mask,
                                             pre_acoustic_embeds, ys_pad_lens)
            pred_tokens = decoder_out.argmax(-1)
            nonpad_positions = tgt_mask
            same_num = ((pred_tokens == ys_pad) * nonpad_positions).sum(1)
            input_mask = torch.ones_like(
                nonpad_positions,
                device=device,
                dtype=tgt_mask.dtype,
            )
            for li in range(B):
                target_num = (ys_pad_lens[li] -
                              same_num[li].sum()).float() * self.sampling_ratio
                target_num = target_num.long()
                if target_num > 0:
                    input_mask[li].scatter_(
                        dim=0,
                        index=torch.randperm(ys_pad_lens[li],
                                             device=device)[:target_num],
                        value=0,
                    )
            input_mask = torch.where(input_mask > 0, 1, 0)
            input_mask = input_mask * tgt_mask
            input_mask_expand = input_mask.unsqueeze(2)  # [B, T, 1]

        sematic_embeds = torch.where(input_mask_expand == 1,
                                     pre_acoustic_embeds, ys_pad_embed)
        # zero out the paddings
        return sematic_embeds * tgt_mask.unsqueeze(2)

    def _forward_encoder(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = 0,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # TODO(Mddct): support chunk by chunk
        assert simulate_streaming is False
        features, features_lens = self.lfr(speech, speech_lengths)
        features_lens = features_lens.to(speech_lengths.dtype)
        encoder_out, encoder_out_mask = self.encoder(features, features_lens,
                                                     decoding_chunk_size,
                                                     num_decoding_left_chunks)
        return encoder_out, encoder_out_mask

    @torch.jit.export
    def forward_paraformer(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        res = self._forward_paraformer(speech, speech_lengths)
        return res['decoder_out'], res['decoder_out_lens'], res['tp_alphas']

    @torch.jit.export
    def forward_encoder_chunk(
        self,
        xs: torch.Tensor,
        offset: int,
        required_cache_size: int,
        att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        # TODO(Mddct): fix
        xs_lens = torch.tensor(xs.size(1), dtype=torch.int)
        encoder_out, _ = self._forward_encoder(xs, xs_lens)
        return encoder_out, att_cache, cnn_cache

    @torch.jit.export
    def forward_cif_peaks(self, alphas: torch.Tensor,
                          token_nums: torch.Tensor) -> torch.Tensor:
        cif2_token_nums = alphas.sum(-1)
        scale_alphas = alphas / (cif2_token_nums / token_nums).unsqueeze(1)
        peaks = cif_without_hidden(scale_alphas,
                                   self.predictor.predictor.threshold - 1e-4)

        return peaks

    def _forward_paraformer(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
    ) -> Dict[str, torch.Tensor]:
        # encoder
        encoder_out, encoder_out_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks)

        # cif predictor
        acoustic_embed, token_num, _, _, tp_alphas, _ = self.predictor(
            encoder_out, mask=encoder_out_mask)
        token_num = token_num.floor().to(speech_lengths.dtype)

        # decoder
        decoder_out, _, _ = self.decoder(encoder_out, encoder_out_mask,
                                         acoustic_embed, token_num)
        decoder_out = decoder_out.log_softmax(dim=-1)

        return {
            "encoder_out": encoder_out,
            "encoder_out_mask": encoder_out_mask,
            "decoder_out": decoder_out,
            "tp_alphas": tp_alphas,
            "decoder_out_lens": token_num
        }

    def decode(
        self,
        methods: List[str],
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        beam_size: int,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        ctc_weight: float = 0,
        simulate_streaming: bool = False,
        reverse_weight: float = 0,
        context_graph=None,
        blank_id: int = 0,
        blank_penalty: float = 0.0,
        length_penalty: float = 0.0,
        infos: Dict[str, List[str]] = None,
    ) -> Dict[str, List[DecodeResult]]:
        res = self._forward_paraformer(speech, speech_lengths,
                                       decoding_chunk_size,
                                       num_decoding_left_chunks)
        encoder_out, encoder_mask, decoder_out, decoder_out_lens, tp_alphas = res[
            'encoder_out'], res['encoder_out_mask'], res['decoder_out'], res[
                'decoder_out_lens'], res['tp_alphas']
        peaks = self.forward_cif_peaks(tp_alphas, decoder_out_lens)
        results = {}
        if 'paraformer_greedy_search' in methods:
            assert decoder_out is not None
            assert decoder_out_lens is not None
            paraformer_greedy_result = paraformer_greedy_search(
                decoder_out, decoder_out_lens, peaks)
            results['paraformer_greedy_search'] = paraformer_greedy_result
        if 'paraformer_beam_search' in methods:
            assert decoder_out is not None
            assert decoder_out_lens is not None
            paraformer_beam_result = paraformer_beam_search(
                decoder_out,
                decoder_out_lens,
                beam_size=beam_size,
                eos=self.eos)
            results['paraformer_beam_search'] = paraformer_beam_result
        if 'ctc_greedy_search' in methods or 'ctc_prefix_beam_search' in methods:
            ctc_probs = self.ctc_logprobs(encoder_out, blank_penalty, blank_id)
            encoder_lens = encoder_mask.squeeze(1).sum(1)
            if 'ctc_greedy_search' in methods:
                results['ctc_greedy_search'] = ctc_greedy_search(
                    ctc_probs, encoder_lens, blank_id)
            if 'ctc_prefix_beam_search' in methods:
                ctc_prefix_result = ctc_prefix_beam_search(
                    ctc_probs, encoder_lens, beam_size, context_graph,
                    blank_id)
                results['ctc_prefix_beam_search'] = ctc_prefix_result
        return results