File size: 6,778 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University)
#               2023 Voicecomm Inc (Kai Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""Encoder definition."""

import torch

from typing import List, Optional, Union

from wenet.branchformer.encoder_layer import BranchformerEncoderLayer
from wenet.branchformer.cgmlp import ConvolutionalGatingMLP
from wenet.transformer.encoder import BaseEncoder
from wenet.utils.class_utils import (
    WENET_ATTENTION_CLASSES, )


class BranchformerEncoder(BaseEncoder):
    """Branchformer encoder module."""

    def __init__(
        self,
        input_size: int,
        output_size: int = 256,
        use_attn: bool = True,
        attention_heads: int = 4,
        selfattention_layer_type: str = "rel_selfattn",
        pos_enc_layer_type: str = "rel_pos",
        use_cgmlp: bool = True,
        cgmlp_linear_units: int = 2048,
        cgmlp_conv_kernel: int = 31,
        use_linear_after_conv: bool = False,
        gate_activation: str = "identity",
        merge_method: str = "concat",
        cgmlp_weight: Union[float, List[float]] = 0.5,
        attn_branch_drop_rate: Union[float, List[float]] = 0.0,
        num_blocks: int = 12,
        dropout_rate: float = 0.1,
        positional_dropout_rate: float = 0.1,
        attention_dropout_rate: float = 0.0,
        input_layer: str = "conv2d",
        stochastic_depth_rate: Union[float, List[float]] = 0.0,
        static_chunk_size: int = 0,
        use_dynamic_chunk: bool = False,
        global_cmvn: torch.nn.Module = None,
        use_dynamic_left_chunk: bool = False,
        causal: bool = False,
        query_bias: bool = True,
        key_bias: bool = True,
        value_bias: bool = True,
        gradient_checkpointing: bool = False,
        use_sdpa: bool = False,
        layer_norm_type: str = 'layer_norm',
        norm_eps: float = 1e-5,
        n_kv_head: Optional[int] = None,
        head_dim: Optional[int] = None,
    ):
        super().__init__(input_size, output_size, attention_heads,
                         cgmlp_linear_units, num_blocks, dropout_rate,
                         positional_dropout_rate, attention_dropout_rate,
                         input_layer, pos_enc_layer_type, True,
                         static_chunk_size, use_dynamic_chunk, global_cmvn,
                         use_dynamic_left_chunk, gradient_checkpointing,
                         use_sdpa, layer_norm_type, norm_eps)

        encoder_selfattn_layer_args = (
            attention_heads,
            output_size,
            attention_dropout_rate,
            query_bias,
            key_bias,
            value_bias,
            use_sdpa,
            n_kv_head,
            head_dim,
        )

        cgmlp_layer = ConvolutionalGatingMLP
        cgmlp_layer_args = (
            output_size,
            cgmlp_linear_units,
            cgmlp_conv_kernel,
            dropout_rate,
            use_linear_after_conv,
            gate_activation,
            causal,
        )

        if isinstance(stochastic_depth_rate, float):
            stochastic_depth_rate = [stochastic_depth_rate] * num_blocks
        if len(stochastic_depth_rate) != num_blocks:
            raise ValueError(
                f"Length of stochastic_depth_rate ({len(stochastic_depth_rate)}) "
                f"should be equal to num_blocks ({num_blocks})")

        if isinstance(cgmlp_weight, float):
            cgmlp_weight = [cgmlp_weight] * num_blocks
        if len(cgmlp_weight) != num_blocks:
            raise ValueError(
                f"Length of cgmlp_weight ({len(cgmlp_weight)}) should be equal to "
                f"num_blocks ({num_blocks})")

        if isinstance(attn_branch_drop_rate, float):
            attn_branch_drop_rate = [attn_branch_drop_rate] * num_blocks
        if len(attn_branch_drop_rate) != num_blocks:
            raise ValueError(
                f"Length of attn_branch_drop_rate ({len(attn_branch_drop_rate)}) "
                f"should be equal to num_blocks ({num_blocks})")

        self.encoders = LayerDropModuleList(
            p=stochastic_depth_rate,
            modules=[
                BranchformerEncoderLayer(
                    output_size,
                    WENET_ATTENTION_CLASSES[selfattention_layer_type](
                        *encoder_selfattn_layer_args) if use_attn else None,
                    cgmlp_layer(*cgmlp_layer_args) if use_cgmlp else None,
                    dropout_rate,
                    merge_method,
                    cgmlp_weight[lnum],
                    attn_branch_drop_rate[lnum],
                    stochastic_depth_rate[lnum],
                ) for lnum in range(num_blocks)
            ])


# modify from : https://github.com/facebookresearch/fairseq/blob/main/fairseq/modules/layer_drop.py # noqa
class LayerDropModuleList(torch.nn.ModuleList):
    """
    A LayerDrop implementation based on :class:`torch.nn.ModuleList`.

    We refresh the choice of which layers to drop every time we iterate
    over the LayerDropModuleList instance. During evaluation we always
    iterate over all layers.

    Usage::

        layers = LayerDropList(p=0.5, modules=[layer1, layer2, layer3])
        for layer in layers:  # this might iterate over layers 1 and 3
            x = layer(x)
        for layer in layers:  # this might iterate over all layers
            x = layer(x)
        for layer in layers:  # this might not iterate over any layers
            x = layer(x)

    Args:
        p (float): probability of dropping out each layer
        modules (iterable, optional): an iterable of modules to add

    Limitations:
        1 can work with ddp when layer's gradient checkpoint disabled
        2 can't work with ddp when layer's gradient checkpoint enables
        3 can work with fsdp
        4 can work with deepspeed
    """

    def __init__(self, p: List[float], modules=None):
        super().__init__(modules)
        assert len(p) == len(self)
        self.p = p

    def __iter__(self):
        dropout_probs = torch.empty(len(self)).uniform_()
        for i, m in enumerate(super().__iter__()):
            if not self.training or (dropout_probs[i] > self.p[i]):
                yield m