File size: 11,861 Bytes
e4f8633
 
 
a2e1ce0
e4f8633
77144c8
e4f8633
77144c8
e4f8633
 
 
b066720
e4f8633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77144c8
 
e4f8633
 
 
 
 
 
 
 
 
 
 
77144c8
e4f8633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d845e75
e4f8633
 
 
 
 
 
77144c8
e4f8633
 
 
 
 
 
 
 
 
77144c8
e4f8633
 
 
77144c8
e4f8633
 
 
 
 
 
77144c8
e4f8633
 
 
 
 
 
 
 
 
 
 
 
77144c8
e4f8633
 
 
 
 
 
77144c8
e4f8633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import base64
import json
import time
import spaces

import gradio as gr
import os

import sys


# sys.path.insert(0, '../../../../')
# from gxl_ai_utils.utils import utils_file
# from wenet.utils.init_tokenizer import init_tokenizer
# from gxl_ai_utils.config.gxl_config import GxlNode
# from wenet.utils.init_model import init_model
import logging
# import librosa
# import torch
# import torchaudio
# import numpy as np

# 将图片转换为 Base64
with open("./实验室.png", "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")

# with open("./cat.jpg", "rb") as image_file:
#     encoded_string = base64.b64encode(image_file.read()).decode("utf-8")

# 自定义CSS样式
custom_css = """
/* 自定义CSS样式 */
"""

# 任务提示映射
TASK_PROMPT_MAPPING = {
    "ASR (Automatic Speech Recognition)": "执行语音识别任务,将音频转换为文字。",
    "SRWT (Speech Recognition with Timestamps)": "请转录音频内容,并为每个英文词汇及其对应的中文翻译标注出精确到0.1秒的起止时间,时间范围用<>括起来。",
    "VED (Vocal Event Detection)(类别:laugh,cough,cry,screaming,sigh,throat clearing,sneeze,other)": "请将音频转录为文字记录,并在记录末尾标注<音频事件>标签,音频事件共8种:laugh,cough,cry,screaming,sigh,throat clearing,sneeze,other。",
    "SER (Speech Emotion Recognition)(类别:sad,anger,neutral,happy,surprise,fear,disgust,和other)": "请将音频内容转录成文字记录,并在记录末尾标注<情感>标签,情感共8种:sad,anger,neutral,happy,surprise,fear,disgust,和other。",
    "SSR (Speaking Style Recognition)(类别:新闻科普,恐怖故事,童话故事,客服,诗歌散文,有声书,日常口语,其他)": "请将音频内容进行文字转录,并在最后添加<风格>标签,标签共8种:新闻科普、恐怖故事、童话故事、客服、诗歌散文、有声书、日常口语、其他。",
    "SGC (Speaker Gender Classification)(类别:female,male)": "请将音频转录为文本,并在文本结尾处标注<性别>标签,性别为female或male。",
    "SAP (Speaker Age Prediction)(类别:child、adult和old)": "请将音频转录为文本,并在文本结尾处标注<年龄>标签,年龄划分为child、adult和old三种。",
    "STTC (Speech to Text Chat)": "首先将语音转录为文字,然后对语音内容进行回复,转录和文字之间使用<开始回答>分割。"
}

gpu_id = 4
# def init_model_my():
#     logging.basicConfig(level=logging.DEBUG,
#                         format='%(asctime)s %(levelname)s %(message)s')
#     config_path = "/home/node54_tmpdata/xlgeng/code/wenet_undersdand_and_speech_xlgeng/examples/wenetspeech/whisper/exp/update_data/epoch_1_with_token/epoch_11.yaml"
#     #config_path = "/home/work_nfs15/asr_data/ckpt/understanding_model/step_24999.yaml"
#
#     checkpoint_path = "/home/node54_tmpdata/xlgeng/code/wenet_undersdand_and_speech_xlgeng/examples/wenetspeech/whisper/exp/update_data/epoch_1_with_token/epoch_11.pt"
#     checkpoint_path = "/home/work_nfs15/asr_data/ckpt/understanding_model/epoch4/step_21249.pt"
#     checkpoint_path = "/home/work_nfs15/asr_data/ckpt/understanding_model/epoch_13_with_asr-chat_full_data/step_32499/step_32499.pt"
#     args = GxlNode({
#         "checkpoint": checkpoint_path,
#     })
#     configs = utils_file.load_dict_from_yaml(config_path)
#     model, configs = init_model(args, configs)
#     model = model.cuda(gpu_id)
#     tokenizer = init_tokenizer(configs)
#     print(model)
#     return model, tokenizer
#
# model, tokenizer = init_model_my()
#
# def do_resample(input_wav_path, output_wav_path):
#     """"""
#     print(f'input_wav_path: {input_wav_path}, output_wav_path: {output_wav_path}')
#     waveform, sample_rate = torchaudio.load(input_wav_path)
#     # 检查音频的维度
#     num_channels = waveform.shape[0]
#     # 如果音频是多通道的,则进行通道平均
#     if num_channels > 1:
#         waveform = torch.mean(waveform, dim=0, keepdim=True)
#     waveform = torchaudio.transforms.Resample(
#         orig_freq=sample_rate, new_freq=16000)(waveform)
#     utils_file.makedir_for_file(output_wav_path)
#     torchaudio.save(output_wav_path, waveform, 16000)
#
# def true_decode_fuc(input_wav_path, input_prompt):
#     # input_prompt = TASK_PROMPT_MAPPING.get(input_prompt, "未知任务类型")
#     print(f"wav_path: {input_wav_path}, prompt:{input_prompt}")
#     timestamp_ms = int(time.time() * 1000)
#     now_file_tmp_path_resample = f'/home/xlgeng/.cache/.temp/{timestamp_ms}_resample.wav'
#     do_resample(input_wav_path, now_file_tmp_path_resample)
#     # tmp_vad_path = f'/home/xlgeng/.cache/.temp/{timestamp_ms}_vad.wav'
#     # remove_silence_torchaudio_ends(now_file_tmp_path_resample, tmp_vad_path)
#     # input_wav_path  = tmp_vad_path
#     input_wav_path = now_file_tmp_path_resample
#     waveform, sample_rate = torchaudio.load(input_wav_path)
#     waveform = waveform.squeeze(0)  # (channel=1, sample) -> (sample,)
#     print(f'wavform shape: {waveform.shape}, sample_rate: {sample_rate}')
#     window = torch.hann_window(400)
#     stft = torch.stft(waveform,
#                       400,
#                       160,
#                       window=window,
#                       return_complex=True)
#     magnitudes = stft[..., :-1].abs() ** 2
#
#     filters = torch.from_numpy(
#         librosa.filters.mel(sr=sample_rate,
#                             n_fft=400,
#                             n_mels=80))
#     mel_spec = filters @ magnitudes
#
#     # NOTE(xcsong): https://github.com/openai/whisper/discussions/269
#     log_spec = torch.clamp(mel_spec, min=1e-10).log10()
#     log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
#     log_spec = (log_spec + 4.0) / 4.0
#     feat = log_spec.transpose(0, 1)
#     feat_lens = torch.tensor([feat.shape[0]], dtype=torch.int64).to(gpu_id)
#     feat = feat.unsqueeze(0).to(gpu_id)
#     # feat = feat.half()
#     # feat_lens = feat_lens.half()
#     res_text = model.generate(wavs=feat, wavs_len=feat_lens, prompt=input_prompt)[0]
#     print("耿雪龙哈哈:", res_text)
#     return res_text, now_file_tmp_path_resample
@spaces.GPU
def do_decode(input_wav_path, input_prompt):
    print(f'input_wav_path= {input_wav_path}, input_prompt= {input_prompt}')
    # 省略处理逻辑
    # output_res, now_file_tmp_path_resample= true_decode_fuc(input_wav_path, input_prompt)
    output_res = f"耿雪龙哈哈:测试结果, input_wav_path= {input_wav_path}, input_prompt= {input_prompt}"
    return output_res

def save_to_jsonl(if_correct, wav, prompt, res):
    data = {
        "if_correct": if_correct,
        "wav": wav,
        "task": prompt,
        "res": res
    }
    with open("results.jsonl", "a", encoding="utf-8") as f:
        f.write(json.dumps(data, ensure_ascii=False) + "\n")

def handle_submit(input_wav_path, input_prompt):
    output_res = do_decode(input_wav_path, input_prompt)
    return output_res

def download_audio(input_wav_path):
    if input_wav_path:
        # 返回文件路径供下载
        return input_wav_path
    else:
        return None

# 创建Gradio界面
with gr.Blocks(css=custom_css) as demo:
    # 添加标题
    gr.Markdown(
        f"""
        <div style="display: flex; align-items: center; justify-content: center; text-align: center;">
            <h1 style="font-family: 'Arial', sans-serif; color: #014377; font-size: 32px; margin-bottom: 0; display: inline-block; vertical-align: middle;">
                OSUM Speech Understanding Model Test
            </h1>
        </div>
        """
    )

    # 添加音频输入和任务选择
    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(label="录音", type="filepath")
        with gr.Column(scale=1, min_width=300):  # 给输出框设置最小宽度,确保等高对齐
            output_text = gr.Textbox(label="输出结果", lines=8, placeholder="生成的结果将显示在这里...", interactive=False)

    # 添加任务选择和自定义输入框
    with gr.Row():
        task_dropdown = gr.Dropdown(
            label="任务",
            choices=list(TASK_PROMPT_MAPPING.keys()) + ["自主输入文本"],  # 新增选项
            value="ASR (Automatic Speech Recognition)"
        )
        custom_prompt_input = gr.Textbox(label="自定义任务提示", placeholder="请输入自定义任务提示...", visible=False)  # 新增文本输入框

    # 添加按钮(下载按钮在左边,开始处理按钮在右边)
    with gr.Row():
        download_button = gr.DownloadButton("下载音频", variant="secondary", elem_classes=["button-height", "download-button"])
        submit_button = gr.Button("开始处理", variant="primary", elem_classes=["button-height", "submit-button"])

    # 添加确认组件
    with gr.Row(visible=False) as confirmation_row:
        gr.Markdown("请判断结果是否正确:")
        confirmation_buttons = gr.Radio(
            choices=["正确", "错误"],
            label="",
            interactive=True,
            container=False,
            elem_classes="confirmation-buttons"
        )
        save_button = gr.Button("提交反馈", variant="secondary")

    # 添加底部内容
    with gr.Row():
        # 底部内容容器
        with gr.Column(scale=1, min_width=800):  # 设置最小宽度以确保内容居中
            gr.Markdown(
                f"""
                <div style="position: fixed; bottom: 20px; left: 50%; transform: translateX(-50%); display: flex; align-items: center; justify-content: center; gap: 20px;">
                    <div style="text-align: center;">
                        <p style="margin: 0;"><strong>Audio, Speech and Language Processing Group (ASLP@NPU),</strong></p>
                        <p style="margin: 0;"><strong>Northwestern Polytechnical University</strong></p>
                    </div>
                    <img src="data:image/png;base64,{encoded_string}" alt="OSUM Logo" style="height: 80px; width: auto;">
                </div>
                """
            )

    # 绑定事件
    def show_confirmation(output_res, input_wav_path, input_prompt):
        return gr.update(visible=True), output_res, input_wav_path, input_prompt

    def save_result(if_correct, wav, prompt, res):
        save_to_jsonl(if_correct, wav, prompt, res)
        return gr.update(visible=False)

    def handle_submit(input_wav_path, task_choice, custom_prompt):
        if task_choice == "自主输入文本":
            input_prompt = custom_prompt  # 使用用户输入的自定义文本
        else:
            input_prompt = TASK_PROMPT_MAPPING.get(task_choice, "未知任务类型")  # 使用预定义的提示
        output_res = do_decode(input_wav_path, input_prompt)
        return output_res

    task_dropdown.change(
        fn=lambda choice: gr.update(visible=choice == "自主输入文本"),
        inputs=task_dropdown,
        outputs=custom_prompt_input
    )

    submit_button.click(
        fn=handle_submit,
        inputs=[audio_input, task_dropdown, custom_prompt_input],
        outputs=output_text
    ).then(
        fn=show_confirmation,
        inputs=[output_text, audio_input, task_dropdown],
        outputs=[confirmation_row, output_text, audio_input, task_dropdown]
    )

    download_button.click(
        fn=download_audio,
        inputs=[audio_input],
        outputs=[download_button]  # 输出到 download_button
    )

    save_button.click(
        fn=save_result,
        inputs=[confirmation_buttons, audio_input, task_dropdown, output_text],
        outputs=confirmation_row
    )

if __name__== "__main__":
    demo.launch()