File size: 11,786 Bytes
d9ae2cb
 
 
 
 
 
 
e4f8633
d9ae2cb
e4f8633
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f8633
 
d9ae2cb
 
 
 
 
 
 
 
 
 
 
e4f8633
 
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f8633
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f8633
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f8633
d9ae2cb
 
 
 
 
e4f8633
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f8633
d9ae2cb
 
 
 
 
 
e4f8633
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9bb13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ae2cb
dd9bb13
d9ae2cb
 
dd9bb13
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
dd9bb13
d9ae2cb
 
 
 
 
 
dd9bb13
d9ae2cb
 
dd9bb13
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9bb13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ae2cb
 
 
 
 
 
 
 
 
 
dd9bb13
 
 
 
 
 
 
 
 
 
d9ae2cb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dd9bb13
d9ae2cb
e4f8633
d9ae2cb
 
 
 
 
e4f8633
 
d9ae2cb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import base64
import json
import time
from types import SimpleNamespace

# import spaces

import gradio as gr
import os

import sys

import yaml

sys.path.insert(0, './')
# from wenet.utils.init_tokenizer import init_tokenizer
# from wenet.utils.init_model import init_model
import logging
# import librosa
# import torch
# import torchaudio
import numpy as np
def makedir_for_file(filepath):
    dirpath = os.path.dirname(filepath)
    if not os.path.exists(dirpath):
        os.makedirs(dirpath)
def load_dict_from_yaml(file_path: str):
    with open(file_path, 'rt', encoding='utf-8') as f:
        dict_1 = yaml.load(f, Loader=yaml.FullLoader)
    return dict_1


# 获取当前脚本文件的绝对路径
abs_path = os.path.abspath(__file__)
# 将图片转换为 Base64
with open(os.path.join(os.path.dirname(abs_path), "lab.png"), "rb") as image_file:
    encoded_string = base64.b64encode(image_file.read()).decode("utf-8")

# with open("./cat.jpg", "rb") as image_file:
#     encoded_string = base64.b64encode(image_file.read()).decode("utf-8")

# 自定义CSS样式
custom_css = """
/* 自定义CSS样式 */
"""

# 任务提示映射
TASK_PROMPT_MAPPING = {
    "ASR (Automatic Speech Recognition)": "执行语音识别任务,将音频转换为文字。",
    "SRWT (Speech Recognition with Timestamps)": "请转录音频内容,并为每个英文词汇及其对应的中文翻译标注出精确到0.1秒的起止时间,时间范围用<>括起来。",
    "VED (Vocal Event Detection)(Categories:laugh,cough,cry,screaming,sigh,throat clearing,sneeze,other)": "请将音频转录为文字记录,并在记录末尾标注<音频事件>标签,音频事件共8种:laugh,cough,cry,screaming,sigh,throat clearing,sneeze,other。",
    "SER (Speech Emotion Recognition)(Categories:sad,anger,neutral,happy,surprise,fear,disgust,和other)": "请将音频内容转录成文字记录,并在记录末尾标注<情感>标签,情感共8种:sad,anger,neutral,happy,surprise,fear,disgust,和other。",
    "SSR (Speaking Style Recognition)(Categories:新闻科普,恐怖故事,童话故事,客服,诗歌散文,有声书,日常口语,其他)": "请将音频内容进行文字转录,并在最后添加<风格>标签,标签共8种:新闻科普、恐怖故事、童话故事、客服、诗歌散文、有声书、日常口语、其他。",
    "SGC (Speaker Gender Classification)(Categories:female,male)": "请将音频转录为文本,并在文本结尾处标注<性别>标签,性别为female或male。",
    "SAP (Speaker Age Prediction)(Categories:child、adult和old)": "请将音频转录为文本,并在文本结尾处标注<年龄>标签,年龄划分为child、adult和old三种。",
    "STTC (Speech to Text Chat)": "首先将语音转录为文字,然后对语音内容进行回复,转录和文字之间使用<开始回答>分割。"
}


def init_model_my():
    logging.basicConfig(level=logging.DEBUG,
                        format='%(asctime)s %(levelname)s %(message)s')
    config_path = "train.yaml"
    from huggingface_hub import hf_hub_download
    # 从Hugging Face下载.pt文件
    pt_file_path = hf_hub_download(repo_id="ASLP-lab/OSUM", filename="infer.pt")
    args = SimpleNamespace(**{
        "checkpoint": pt_file_path,
    })
    configs = load_dict_from_yaml(config_path)
    model, configs = init_model(args, configs)
    model = model.cuda()
    tokenizer = init_tokenizer(configs)
    print(model)
    return model, tokenizer

# global_model, tokenizer = init_model_my()
print("model init success")
def do_resample(input_wav_path, output_wav_path):
    """"""
    print(f'input_wav_path: {input_wav_path}, output_wav_path: {output_wav_path}')
    waveform, sample_rate = torchaudio.load(input_wav_path)
    # 检查音频的维度
    num_channels = waveform.shape[0]
    # 如果音频是多通道的,则进行通道平均
    if num_channels > 1:
        waveform = torch.mean(waveform, dim=0, keepdim=True)
    waveform = torchaudio.transforms.Resample(
        orig_freq=sample_rate, new_freq=16000)(waveform)
    makedir_for_file(output_wav_path)
    torchaudio.save(output_wav_path, waveform, 16000)

# @spaces.GPU
def true_decode_fuc(input_wav_path, input_prompt):
    # input_prompt = TASK_PROMPT_MAPPING.get(input_prompt, "未知任务类型")
    print(f"wav_path: {input_wav_path}, prompt:{input_prompt}")
    timestamp_ms = int(time.time() * 1000)
    now_file_tmp_path_resample = f'/home/xlgeng/.cache/.temp/{timestamp_ms}_resample.wav'
    do_resample(input_wav_path, now_file_tmp_path_resample)
    input_wav_path = now_file_tmp_path_resample
    waveform, sample_rate = torchaudio.load(input_wav_path)
    waveform = waveform.squeeze(0)  # (channel=1, sample) -> (sample,)
    print(f'wavform shape: {waveform.shape}, sample_rate: {sample_rate}')
    window = torch.hann_window(400)
    stft = torch.stft(waveform,
                      400,
                      160,
                      window=window,
                      return_complex=True)
    magnitudes = stft[..., :-1].abs() ** 2

    filters = torch.from_numpy(
        librosa.filters.mel(sr=sample_rate,
                            n_fft=400,
                            n_mels=80))
    mel_spec = filters @ magnitudes

    # NOTE(xcsong): https://github.com/openai/whisper/discussions/269
    log_spec = torch.clamp(mel_spec, min=1e-10).log10()
    log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
    log_spec = (log_spec + 4.0) / 4.0
    feat = log_spec.transpose(0, 1)
    feat_lens = torch.tensor([feat.shape[0]], dtype=torch.int64).cuda()
    feat = feat.unsqueeze(0).cuda()
    # feat = feat.half()
    # feat_lens = feat_lens.half()
    model = global_model.cuda()
    model.eval()
    res_text = model.generate(wavs=feat, wavs_len=feat_lens, prompt=input_prompt)[0]
    print("耿雪龙哈哈:", res_text)
    return res_text

def do_decode(input_wav_path, input_prompt):
    print(f'input_wav_path= {input_wav_path}, input_prompt= {input_prompt}')
    # 省略处理逻辑
    # output_res= true_decode_fuc(input_wav_path, input_prompt)
    output_res = f"耿雪龙哈哈:测试结果, input_wav_path= {input_wav_path}, input_prompt= {input_prompt}"
    return output_res

def save_to_jsonl(if_correct, wav, prompt, res):
    data = {
        "if_correct": if_correct,
        "wav": wav,
        "task": prompt,
        "res": res
    }
    with open("results.jsonl", "a", encoding="utf-8") as f:
        f.write(json.dumps(data, ensure_ascii=False) + "\n")

def handle_submit(input_wav_path, input_prompt):
    output_res = do_decode(input_wav_path, input_prompt)
    return output_res

def download_audio(input_wav_path):
    if input_wav_path:
        # 返回文件路径供下载
        return input_wav_path
    else:
        return None

# 自定义 CSS 样式
CSS = """
.custom-footer {
    position: fixed;
    bottom: 20px;  /* 距离页面底部的距离 */
    left: 50%;
    transform: translateX(-50%);
    display: flex;
    align-items: center;
    justify-content: center;
    gap: 20px;
    text-align: center;
    font-weight: bold;
    padding-bottom: 20px;  /* 在底部添加额外的间距 */
}
.custom-footer p {
    margin: 0;
}
.custom-footer img {
    height: 80px;
    width: auto;
}
"""

# 创建 Gradio 界面
with gr.Blocks(css=CSS) as demo:
    # 添加标题
    gr.Markdown(
        """
        <div style="display: flex; align-items: center; justify-content: center; text-align: center;">
            <h1 style="font-family: 'Arial', sans-serif; color: #014377; font-size: 32px; margin-bottom: 0; display: inline-block; vertical-align: middle;">
                OSUM Speech Understanding Model Test
            </h1>
        </div>
        """
    )

    # 添加音频输入和任务选择
    with gr.Row():
        with gr.Column(scale=1):
            audio_input = gr.Audio(label="Record", type="filepath")
        with gr.Column(scale=1, min_width=300):
            output_text = gr.Textbox(label="Output", lines=8, placeholder="The generated result will be displayed here...", interactive=False)

    # 添加任务选择和自定义输入框
    with gr.Row():
        task_dropdown = gr.Dropdown(
            label="Task",
            choices=list(TASK_PROMPT_MAPPING.keys()) + ["Custom Task Prompt"],
            value="ASR (Automatic Speech Recognition)"
        )
        custom_prompt_input = gr.Textbox(label="Custom Task Prompt", placeholder="Please enter a custom task prompt...", visible=False)

    # 添加按钮(下载按钮在左边,开始处理按钮在右边)
    with gr.Row():
        download_button = gr.DownloadButton("Download Recording", variant="secondary", elem_classes=["button-height", "download-button"])
        submit_button = gr.Button("Start to Process", variant="primary", elem_classes=["button-height", "submit-button"])

    # 添加确认组件
    with gr.Row(visible=False) as confirmation_row:
        gr.Markdown("Please determine whether the result is correct:")
        confirmation_buttons = gr.Radio(
            choices=["Correct", "Incorrect"],
            label="",
            interactive=True,
            container=False,
            elem_classes="confirmation-buttons"
        )
        save_button = gr.Button("Submit Feedback", variant="secondary")

    # 添加底部内容
    gr.HTML(
        f"""
        <div class="custom-footer">
            <div>
                <p>
                    <a href="http://www.nwpu-aslp.org/" target="_blank">Audio, Speech and Language Processing Group (ASLP@NPU)</a>,
                </p>
                <p>
                    Northwestern Polytechnical University
                </p>
                <p>
                    <a href="https://github.com/ASLP-lab/OSUM" target="_blank">GitHub</a>
                </p>
            </div>
            <img src="data:image/png;base64,{encoded_string}" alt="OSUM Logo">
        </div>
        """
    )

    # 绑定事件
    def show_confirmation(output_res, input_wav_path, input_prompt):
        return gr.update(visible=True), output_res, input_wav_path, input_prompt

    def save_result(if_correct, wav, prompt, res):
        save_to_jsonl(if_correct, wav, prompt, res)
        return gr.update(visible=False)

    def handle_submit(input_wav_path, task_choice, custom_prompt):
        try:
            if task_choice == "Custom Task Prompt":
                input_prompt = custom_prompt
            else:
                input_prompt = TASK_PROMPT_MAPPING.get(task_choice, "未知任务类型")
            output_res = do_decode(input_wav_path, input_prompt)
            return output_res
        except Exception as e:
            print(f"Error in handle_submit: {e}")
            return "Error occurred. Please check the input."

    # 当任务选择框的值发生变化时,更新自定义输入框的可见性
    task_dropdown.change(
        fn=lambda choice: gr.update(visible=choice == "Custom Task Prompt"),
        inputs=task_dropdown,
        outputs=custom_prompt_input
    )

    submit_button.click(
        fn=handle_submit,
        inputs=[audio_input, task_dropdown, custom_prompt_input],
        outputs=output_text
    ).then(
        fn=show_confirmation,
        inputs=[output_text, audio_input, task_dropdown],
        outputs=[confirmation_row, output_text, audio_input, task_dropdown]
    )

    download_button.click(
        fn=download_audio,
        inputs=[audio_input],
        outputs=[download_button]
    )

    save_button.click(
        fn=save_result,
        inputs=[confirmation_buttons, audio_input, task_dropdown, output_text],
        outputs=confirmation_row
    )

if __name__ == "__main__":
    demo.launch()