Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,462 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University)
# 2023 Voicecomm Inc (Kai Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""BranchformerEncoderLayer definition."""
import torch
import torch.nn as nn
from typing import Optional, Tuple
from wenet.transformer.attention import T_CACHE
class BranchformerEncoderLayer(torch.nn.Module):
"""Branchformer encoder layer module.
Args:
size (int): model dimension
attn: standard self-attention or efficient attention, optional
cgmlp: ConvolutionalGatingMLP, optional
dropout_rate (float): dropout probability
merge_method (str): concat, learned_ave, fixed_ave
cgmlp_weight (float): weight of the cgmlp branch, between 0 and 1,
used if merge_method is fixed_ave
attn_branch_drop_rate (float): probability of dropping the attn branch,
used if merge_method is learned_ave
stochastic_depth_rate (float): stochastic depth probability
"""
def __init__(
self,
size: int,
attn: Optional[torch.nn.Module],
cgmlp: Optional[torch.nn.Module],
dropout_rate: float,
merge_method: str,
cgmlp_weight: float = 0.5,
attn_branch_drop_rate: float = 0.0,
stochastic_depth_rate: float = 0.0,
):
super().__init__()
assert (attn is not None) or (
cgmlp is not None), "At least one branch should be valid"
self.size = size
self.attn = attn
self.cgmlp = cgmlp
self.merge_method = merge_method
self.cgmlp_weight = cgmlp_weight
self.attn_branch_drop_rate = attn_branch_drop_rate
self.stochastic_depth_rate = stochastic_depth_rate
self.use_two_branches = (attn is not None) and (cgmlp is not None)
if attn is not None:
self.norm_mha = nn.LayerNorm(size) # for the MHA module
if cgmlp is not None:
self.norm_mlp = nn.LayerNorm(size) # for the MLP module
self.norm_final = nn.LayerNorm(
size) # for the final output of the block
self.dropout = torch.nn.Dropout(dropout_rate)
# # attention-based pooling for two branches
self.pooling_proj1 = torch.nn.Linear(size, 1)
self.pooling_proj2 = torch.nn.Linear(size, 1)
# # linear projections for calculating merging weights
self.weight_proj1 = torch.nn.Linear(size, 1)
self.weight_proj2 = torch.nn.Linear(size, 1)
if self.use_two_branches:
if self.merge_method == "concat":
self.merge_proj = torch.nn.Linear(size + size, size)
elif self.merge_method == "learned_ave":
# linear projection after weighted average
self.merge_proj = torch.nn.Linear(size, size)
elif self.merge_method == "fixed_ave":
assert (0.0 <= cgmlp_weight <=
1.0), "cgmlp weight should be between 0.0 and 1.0"
# remove the other branch if only one branch is used
if cgmlp_weight == 0.0:
self.use_two_branches = False
self.cgmlp = None
self.norm_mlp = None
elif cgmlp_weight == 1.0:
self.use_two_branches = False
self.attn = None
self.norm_mha = None
# linear projection after weighted average
self.merge_proj = torch.nn.Linear(size, size)
else:
raise ValueError(f"unknown merge method: {merge_method}")
else:
self.merge_proj = torch.nn.Identity()
def _forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: T_CACHE = (torch.zeros(
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
stoch_layer_coeff: float = 1.0
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
# Two branches
x1 = x
x2 = x
# Branch 1: multi-headed attention module
if self.attn is not None:
x1 = self.norm_mha(x1)
x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb,
att_cache)
x1 = self.dropout(x_att)
# Branch 2: convolutional gating mlp
# Fake new cnn cache here, and then change it in conv_module
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
if self.cgmlp is not None:
x2 = self.norm_mlp(x2)
x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache)
x2 = self.dropout(x2)
# Merge two branches
if self.use_two_branches:
if self.merge_method == "concat":
x = x + stoch_layer_coeff * self.dropout(
self.merge_proj(torch.cat([x1, x2], dim=-1)))
elif self.merge_method == "learned_ave":
if (self.training and self.attn_branch_drop_rate > 0
and torch.rand(1).item() < self.attn_branch_drop_rate):
# Drop the attn branch
w1, w2 = torch.tensor(0.0), torch.tensor(1.0)
else:
# branch1
score1 = (self.pooling_proj1(x1).transpose(1, 2) /
self.size**0.5)
score1 = score1.masked_fill(mask_pad.eq(0), -float('inf'))
score1 = torch.softmax(score1, dim=-1).masked_fill(
mask_pad.eq(0), 0.0)
pooled1 = torch.matmul(score1,
x1).squeeze(1) # (batch, size)
weight1 = self.weight_proj1(pooled1) # (batch, 1)
# branch2
score2 = (self.pooling_proj2(x2).transpose(1, 2) /
self.size**0.5)
score2 = score2.masked_fill(mask_pad.eq(0), -float('inf'))
score2 = torch.softmax(score2, dim=-1).masked_fill(
mask_pad.eq(0), 0.0)
pooled2 = torch.matmul(score2,
x2).squeeze(1) # (batch, size)
weight2 = self.weight_proj2(pooled2) # (batch, 1)
# normalize weights of two branches
merge_weights = torch.softmax(torch.cat([weight1, weight2],
dim=-1),
dim=-1) # (batch, 2)
merge_weights = merge_weights.unsqueeze(-1).unsqueeze(
-1) # (batch, 2, 1, 1)
w1, w2 = merge_weights[:,
0], merge_weights[:,
1] # (batch, 1, 1)
x = x + stoch_layer_coeff * self.dropout(
self.merge_proj(w1 * x1 + w2 * x2))
elif self.merge_method == "fixed_ave":
x = x + stoch_layer_coeff * self.dropout(
self.merge_proj((1.0 - self.cgmlp_weight) * x1 +
self.cgmlp_weight * x2))
else:
raise RuntimeError(
f"unknown merge method: {self.merge_method}")
else:
if self.attn is None:
x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x2))
elif self.cgmlp is None:
x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x1))
else:
# This should not happen
raise RuntimeError(
"Both branches are not None, which is unexpected.")
x = self.norm_final(x)
return x, mask, new_att_cache, new_cnn_cache
def forward(
self,
x: torch.Tensor,
mask: torch.Tensor,
pos_emb: torch.Tensor,
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
att_cache: T_CACHE = (torch.zeros(
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
"""Compute encoded features.
Args:
x (Union[Tuple, torch.Tensor]): Input tensor (#batch, time, size).
mask (torch.Tensor): Mask tensor for the input (#batch, time, time).
pos_emb (torch.Tensor): positional encoding, must not be None
for BranchformerEncoderLayer.
mask_pad (torch.Tensor): batch padding mask used for conv module.
(#batch, 1,time), (0, 0, 0) means fake mask.
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
cnn_cache (torch.Tensor): Convolution cache in cgmlp layer
(#batch=1, size, cache_t2)
Returns:
torch.Tensor: Output tensor (#batch, time, size).
torch.Tensor: Mask tensor (#batch, time, time.
torch.Tensor: att_cache tensor,
(#batch=1, head, cache_t1 + time, d_k * 2).
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
"""
stoch_layer_coeff = 1.0
# with stochastic depth, residual connection `x + f(x)` becomes
# `x <- x + 1 / (1 - p) * f(x)` at training time.
if self.training:
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache,
stoch_layer_coeff)
|