File size: 10,462 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University)
#               2023 Voicecomm Inc (Kai Li)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)
"""BranchformerEncoderLayer definition."""

import torch
import torch.nn as nn
from typing import Optional, Tuple

from wenet.transformer.attention import T_CACHE


class BranchformerEncoderLayer(torch.nn.Module):
    """Branchformer encoder layer module.

    Args:
        size (int): model dimension
        attn: standard self-attention or efficient attention, optional
        cgmlp: ConvolutionalGatingMLP, optional
        dropout_rate (float): dropout probability
        merge_method (str): concat, learned_ave, fixed_ave
        cgmlp_weight (float): weight of the cgmlp branch, between 0 and 1,
            used if merge_method is fixed_ave
        attn_branch_drop_rate (float): probability of dropping the attn branch,
            used if merge_method is learned_ave
        stochastic_depth_rate (float): stochastic depth probability
    """

    def __init__(
        self,
        size: int,
        attn: Optional[torch.nn.Module],
        cgmlp: Optional[torch.nn.Module],
        dropout_rate: float,
        merge_method: str,
        cgmlp_weight: float = 0.5,
        attn_branch_drop_rate: float = 0.0,
        stochastic_depth_rate: float = 0.0,
    ):
        super().__init__()
        assert (attn is not None) or (
            cgmlp is not None), "At least one branch should be valid"

        self.size = size
        self.attn = attn
        self.cgmlp = cgmlp
        self.merge_method = merge_method
        self.cgmlp_weight = cgmlp_weight
        self.attn_branch_drop_rate = attn_branch_drop_rate
        self.stochastic_depth_rate = stochastic_depth_rate
        self.use_two_branches = (attn is not None) and (cgmlp is not None)

        if attn is not None:
            self.norm_mha = nn.LayerNorm(size)  # for the MHA module
        if cgmlp is not None:
            self.norm_mlp = nn.LayerNorm(size)  # for the MLP module
        self.norm_final = nn.LayerNorm(
            size)  # for the final output of the block

        self.dropout = torch.nn.Dropout(dropout_rate)

        # # attention-based pooling for two branches
        self.pooling_proj1 = torch.nn.Linear(size, 1)
        self.pooling_proj2 = torch.nn.Linear(size, 1)

        # # linear projections for calculating merging weights
        self.weight_proj1 = torch.nn.Linear(size, 1)
        self.weight_proj2 = torch.nn.Linear(size, 1)

        if self.use_two_branches:
            if self.merge_method == "concat":
                self.merge_proj = torch.nn.Linear(size + size, size)

            elif self.merge_method == "learned_ave":
                # linear projection after weighted average
                self.merge_proj = torch.nn.Linear(size, size)

            elif self.merge_method == "fixed_ave":
                assert (0.0 <= cgmlp_weight <=
                        1.0), "cgmlp weight should be between 0.0 and 1.0"

                # remove the other branch if only one branch is used
                if cgmlp_weight == 0.0:
                    self.use_two_branches = False
                    self.cgmlp = None
                    self.norm_mlp = None
                elif cgmlp_weight == 1.0:
                    self.use_two_branches = False
                    self.attn = None
                    self.norm_mha = None

                # linear projection after weighted average
                self.merge_proj = torch.nn.Linear(size, size)
            else:
                raise ValueError(f"unknown merge method: {merge_method}")
        else:
            self.merge_proj = torch.nn.Identity()

    def _forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        pos_emb: torch.Tensor,
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        att_cache: T_CACHE = (torch.zeros(
            (0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
        stoch_layer_coeff: float = 1.0
    ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
        # Two branches
        x1 = x
        x2 = x

        # Branch 1: multi-headed attention module
        if self.attn is not None:
            x1 = self.norm_mha(x1)
            x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb,
                                             att_cache)
            x1 = self.dropout(x_att)

        # Branch 2: convolutional gating mlp
        # Fake new cnn cache here, and then change it in conv_module
        new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device)
        if self.cgmlp is not None:
            x2 = self.norm_mlp(x2)
            x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache)
            x2 = self.dropout(x2)

        # Merge two branches
        if self.use_two_branches:
            if self.merge_method == "concat":
                x = x + stoch_layer_coeff * self.dropout(
                    self.merge_proj(torch.cat([x1, x2], dim=-1)))
            elif self.merge_method == "learned_ave":
                if (self.training and self.attn_branch_drop_rate > 0
                        and torch.rand(1).item() < self.attn_branch_drop_rate):
                    # Drop the attn branch
                    w1, w2 = torch.tensor(0.0), torch.tensor(1.0)
                else:
                    # branch1
                    score1 = (self.pooling_proj1(x1).transpose(1, 2) /
                              self.size**0.5)
                    score1 = score1.masked_fill(mask_pad.eq(0), -float('inf'))
                    score1 = torch.softmax(score1, dim=-1).masked_fill(
                        mask_pad.eq(0), 0.0)

                    pooled1 = torch.matmul(score1,
                                           x1).squeeze(1)  # (batch, size)
                    weight1 = self.weight_proj1(pooled1)  # (batch, 1)

                    # branch2
                    score2 = (self.pooling_proj2(x2).transpose(1, 2) /
                              self.size**0.5)
                    score2 = score2.masked_fill(mask_pad.eq(0), -float('inf'))
                    score2 = torch.softmax(score2, dim=-1).masked_fill(
                        mask_pad.eq(0), 0.0)

                    pooled2 = torch.matmul(score2,
                                           x2).squeeze(1)  # (batch, size)
                    weight2 = self.weight_proj2(pooled2)  # (batch, 1)

                    # normalize weights of two branches
                    merge_weights = torch.softmax(torch.cat([weight1, weight2],
                                                            dim=-1),
                                                  dim=-1)  # (batch, 2)
                    merge_weights = merge_weights.unsqueeze(-1).unsqueeze(
                        -1)  # (batch, 2, 1, 1)
                    w1, w2 = merge_weights[:,
                                           0], merge_weights[:,
                                                             1]  # (batch, 1, 1)

                x = x + stoch_layer_coeff * self.dropout(
                    self.merge_proj(w1 * x1 + w2 * x2))
            elif self.merge_method == "fixed_ave":
                x = x + stoch_layer_coeff * self.dropout(
                    self.merge_proj((1.0 - self.cgmlp_weight) * x1 +
                                    self.cgmlp_weight * x2))
            else:
                raise RuntimeError(
                    f"unknown merge method: {self.merge_method}")
        else:
            if self.attn is None:
                x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x2))
            elif self.cgmlp is None:
                x = x + stoch_layer_coeff * self.dropout(self.merge_proj(x1))
            else:
                # This should not happen
                raise RuntimeError(
                    "Both branches are not None, which is unexpected.")

        x = self.norm_final(x)

        return x, mask, new_att_cache, new_cnn_cache

    def forward(
        self,
        x: torch.Tensor,
        mask: torch.Tensor,
        pos_emb: torch.Tensor,
        mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool),
        att_cache: T_CACHE = (torch.zeros(
            (0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)),
        cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)),
    ) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]:
        """Compute encoded features.

        Args:
            x (Union[Tuple, torch.Tensor]): Input tensor  (#batch, time, size).
            mask (torch.Tensor): Mask tensor for the input (#batch, time, time).
            pos_emb (torch.Tensor): positional encoding, must not be None
                for BranchformerEncoderLayer.
            mask_pad (torch.Tensor): batch padding mask used for conv module.
                (#batch, 1,time), (0, 0, 0) means fake mask.
            att_cache (torch.Tensor): Cache tensor of the KEY & VALUE
                (#batch=1, head, cache_t1, d_k * 2), head * d_k == size.
            cnn_cache (torch.Tensor): Convolution cache in cgmlp layer
                (#batch=1, size, cache_t2)

        Returns:
            torch.Tensor: Output tensor (#batch, time, size).
            torch.Tensor: Mask tensor (#batch, time, time.
            torch.Tensor: att_cache tensor,
                (#batch=1, head, cache_t1 + time, d_k * 2).
            torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2).
        """

        stoch_layer_coeff = 1.0
        # with stochastic depth, residual connection `x + f(x)` becomes
        # `x <- x + 1 / (1 - p) * f(x)` at training time.
        if self.training:
            stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate)
        return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache,
                             stoch_layer_coeff)