File size: 8,584 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
# Copyright (c) 2022 Binbin Zhang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import torch

from wenet.finetune.lora.utils import (inject_lora_to_model,
                                       mark_only_lora_as_trainable)
from wenet.k2.model import K2Model
from wenet.llm_asr.init_llmasr import init_llmasr
from wenet.paraformer.cif import Cif
from wenet.paraformer.layers import SanmDecoder, SanmEncoder
from wenet.paraformer.paraformer import Paraformer, Predictor
from wenet.LLM.causallm_model import CausalLM
from wenet.LLM.decoder import DecoderOnly
from wenet.ssl.init_model import WENET_SSL_MODEL_CLASS
from wenet.transducer.joint import TransducerJoint
from wenet.transducer.predictor import (ConvPredictor, EmbeddingPredictor,
                                        RNNPredictor)
from wenet.transducer.transducer import Transducer
from wenet.transformer.asr_model import ASRModel
from wenet.transformer.cmvn import GlobalCMVN
from wenet.transformer.ctc import CTC
from wenet.transformer.encoder import TransformerEncoder, ConformerEncoder
from wenet.transformer.decoder import BiTransformerDecoder, TransformerDecoder
from wenet.branchformer.encoder import BranchformerEncoder
from wenet.e_branchformer.encoder import EBranchformerEncoder
from wenet.squeezeformer.encoder import SqueezeformerEncoder
from wenet.efficient_conformer.encoder import EfficientConformerEncoder
from wenet.ctl_model.encoder import DualTransformerEncoder, DualConformerEncoder
from wenet.ctl_model.asr_model_ctl import CTLModel
from wenet.whisper.whisper import Whisper
from wenet.utils.cmvn import load_cmvn
from wenet.utils.checkpoint import load_checkpoint, load_trained_modules


WENET_ENCODER_CLASSES = {
    "transformer": TransformerEncoder,
    "conformer": ConformerEncoder,
    "squeezeformer": SqueezeformerEncoder,
    "efficientConformer": EfficientConformerEncoder,
    "branchformer": BranchformerEncoder,
    "e_branchformer": EBranchformerEncoder,
    "dual_transformer": DualTransformerEncoder,
    "dual_conformer": DualConformerEncoder,
    'sanm_encoder': SanmEncoder,
}

WENET_DECODER_CLASSES = {
    "transformer": TransformerDecoder,
    "bitransformer": BiTransformerDecoder,
    "sanm_decoder": SanmDecoder,
}

WENET_CTC_CLASSES = {
    "ctc": CTC,
}

WENET_PREDICTOR_CLASSES = {
    "rnn": RNNPredictor,
    "embedding": EmbeddingPredictor,
    "conv": ConvPredictor,
    "cif_predictor": Cif,
    "paraformer_predictor": Predictor,
}

WENET_JOINT_CLASSES = {
    "transducer_joint": TransducerJoint,
}

WENET_MODEL_CLASSES = {
    "asr_model": ASRModel,
    "ctl_model": CTLModel,
    "whisper": Whisper,
    "k2_model": K2Model,
    "transducer": Transducer,
    'paraformer': Paraformer,
    'causal_llm': CausalLM,
}


def init_speech_model(args, configs):
    # TODO(xcsong): Forcefully read the 'cmvn' attribute.
    if configs.get('cmvn', None) == 'global_cmvn':
        mean, istd = load_cmvn(configs['cmvn_conf']['cmvn_file'],
                               configs['cmvn_conf']['is_json_cmvn'])
        global_cmvn = GlobalCMVN(
            torch.from_numpy(mean).float(),
            torch.from_numpy(istd).float())
    else:
        global_cmvn = None

    input_dim = configs['input_dim']
    vocab_size = configs['output_dim']

    encoder_type = configs.get('encoder', 'conformer')
    decoder_type = configs.get('decoder', 'bitransformer')
    ctc_type = configs.get('ctc', 'ctc')

    encoder = WENET_ENCODER_CLASSES[encoder_type](
        input_dim,
        global_cmvn=global_cmvn,
        **configs['encoder_conf'],
        **configs['encoder_conf']['efficient_conf']
        if 'efficient_conf' in configs['encoder_conf'] else {})

    decoder = WENET_DECODER_CLASSES[decoder_type](vocab_size,
                                                  encoder.output_size(),
                                                  **configs['decoder_conf'])

    ctc = WENET_CTC_CLASSES[ctc_type](
        vocab_size,
        encoder.output_size(),
        blank_id=configs['ctc_conf']['ctc_blank_id']
        if 'ctc_conf' in configs else 0)

    model_type = configs.get('model', 'asr_model')
    if model_type == "transducer":
        predictor_type = configs.get('predictor', 'rnn')
        joint_type = configs.get('joint', 'transducer_joint')
        predictor = WENET_PREDICTOR_CLASSES[predictor_type](
            vocab_size, **configs['predictor_conf'])
        joint = WENET_JOINT_CLASSES[joint_type](vocab_size,
                                                **configs['joint_conf'])
        model = WENET_MODEL_CLASSES[model_type](
            vocab_size=vocab_size,
            blank=0,
            predictor=predictor,
            encoder=encoder,
            attention_decoder=decoder,
            joint=joint,
            ctc=ctc,
            special_tokens=configs.get('tokenizer_conf',
                                       {}).get('special_tokens', None),
            **configs['model_conf'])
    elif model_type == 'paraformer':
        predictor_type = configs.get('predictor', 'cif')
        predictor = WENET_PREDICTOR_CLASSES[predictor_type](
            **configs['predictor_conf'])
        model = WENET_MODEL_CLASSES[model_type](
            vocab_size=vocab_size,
            encoder=encoder,
            decoder=decoder,
            predictor=predictor,
            ctc=ctc,
            **configs['model_conf'],
            special_tokens=configs.get('tokenizer_conf',
                                       {}).get('special_tokens', None),
        )
    elif model_type in WENET_SSL_MODEL_CLASS.keys():
        from wenet.ssl.init_model import init_model as init_ssl_model
        model = init_ssl_model(configs, encoder)
    else:
        model = WENET_MODEL_CLASSES[model_type](
            vocab_size=vocab_size,
            encoder=encoder,
            decoder=decoder,
            ctc=ctc,
            special_tokens=configs.get('tokenizer_conf',
                                       {}).get('special_tokens', None),
            **configs['model_conf'])
    return model, configs


def init_causal_llm(configs):
    vocab_size = configs['output_dim']
    assert configs['decoder'] == 'decoder_only'
    assert configs['model'] == 'causal_lm'
    decoder_only = DecoderOnly(**configs['decoder_conf'])

    model = CausalLM(
        vocab_size,
        decoder_only,
        **configs['model_conf'],
        special_tokens=configs.get('tokenizer_conf',
                                   {}).get('special_tokens', None),
    )
    return model, configs


def init_model(args, configs):

    model_type = configs.get('model', 'asr_model')
    configs['model'] = model_type
    if model_type == 'causal_lm':
        model, configs = init_causal_llm(configs)
    elif model_type == "llmasr":
        model = init_llmasr(args, configs)
        return model
    else:
        model, configs = init_speech_model(args, configs)

    if hasattr(args, 'use_lora') and args.use_lora:
        inject_lora_to_model(model, configs['lora_conf'])

    # If specify checkpoint, load some info from checkpoint
    if hasattr(args, 'checkpoint') and args.checkpoint is not None:
        infos = load_checkpoint(model, args.checkpoint)
    elif hasattr(args, 'enc_init') and args.enc_init is not None:
        infos = load_trained_modules(model, args)
    else:
        infos = {}
    if configs.get('init_step', False):
        infos = {}
    configs["init_infos"] = infos

    if hasattr(args, 'use_lora') and args.use_lora:
        if hasattr(args, 'lora_ckpt_path') and args.lora_ckpt_path:
            load_checkpoint(model, args.lora_ckpt_path)

    print(configs)
    # Trye to tie some weights
    if hasattr(model, 'tie_or_clone_weights'):
        if not hasattr(args, 'jit'):
            args.jit = True  # i.e. export onnx/jit/ipex
        model.tie_or_clone_weights(args.jit)

    if hasattr(args, 'only_optimize_lora') and args.only_optimize_lora:
        mark_only_lora_as_trainable(model, bias='lora_only')

    if int(os.environ.get('RANK', 0)) == 0:
        print(configs)

    return model, configs