Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,261 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 |
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Xiaoyu Chen, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import argparse
import copy
import logging
import os
import torch
import yaml
from gxl_ai_utils.utils.utils_model import set_random_seed
from torch.utils.data import DataLoader
from wenet.dataset.dataset import Dataset
from wenet.llm_asr.llmasr_model import LLMASR_Model
from wenet.utils.config import override_config
from wenet.utils.init_model import init_model
from wenet.utils.init_tokenizer import init_tokenizer
from wenet.utils.context_graph import ContextGraph
from wenet.utils.ctc_utils import get_blank_id
from wenet.utils.common import TORCH_NPU_AVAILABLE # noqa just ensure to check torch-npu
def get_args():
parser = argparse.ArgumentParser(description='recognize with your model')
parser.add_argument('--config', required=True, help='config file')
parser.add_argument('--test_data', required=True, help='test data file')
parser.add_argument('--data_type',
default='raw',
# choices=['raw', 'shard'],
help='train and cv data type')
parser.add_argument('--gpu',
type=int,
default=-1,
help='gpu id for this rank, -1 for cpu')
parser.add_argument('--device',
type=str,
default="cpu",
choices=["cpu", "npu", "cuda"],
help='accelerator to use')
parser.add_argument('--dtype',
type=str,
default='fp32',
choices=['fp16', 'fp32', 'bf16'],
help='model\'s dtype')
parser.add_argument('--num_workers',
default=0,
type=int,
help='num of subprocess workers for reading')
parser.add_argument('--checkpoint', required=True, help='checkpoint model')
parser.add_argument('--beam_size',
type=int,
default=10,
help='beam size for search')
parser.add_argument('--length_penalty',
type=float,
default=0.0,
help='length penalty')
parser.add_argument('--blank_penalty',
type=float,
default=0.0,
help='blank penalty')
parser.add_argument('--result_dir', required=True, help='asr result file')
parser.add_argument('--batch_size',
type=int,
default=16,
help='asr result file')
parser.add_argument('--modes',
nargs='+',
help="""decoding mode, support the following:
attention
ctc_greedy_search
ctc_prefix_beam_search
attention_rescoring
rnnt_greedy_search
rnnt_beam_search
rnnt_beam_attn_rescoring
ctc_beam_td_attn_rescoring
hlg_onebest
hlg_rescore
paraformer_greedy_search
paraformer_beam_search""")
parser.add_argument('--search_ctc_weight',
type=float,
default=1.0,
help='ctc weight for nbest generation')
parser.add_argument('--search_transducer_weight',
type=float,
default=0.0,
help='transducer weight for nbest generation')
parser.add_argument('--ctc_weight',
type=float,
default=0.0,
help='ctc weight for rescoring weight in \
attention rescoring decode mode \
ctc weight for rescoring weight in \
transducer attention rescore decode mode')
parser.add_argument('--transducer_weight',
type=float,
default=0.0,
help='transducer weight for rescoring weight in '
'transducer attention rescore mode')
parser.add_argument('--attn_weight',
type=float,
default=0.0,
help='attention weight for rescoring weight in '
'transducer attention rescore mode')
parser.add_argument('--decoding_chunk_size',
type=int,
default=-1,
help='''decoding chunk size,
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here''')
parser.add_argument('--num_decoding_left_chunks',
type=int,
default=-1,
help='number of left chunks for decoding')
parser.add_argument('--simulate_streaming',
action='store_true',
help='simulate streaming inference')
parser.add_argument('--reverse_weight',
type=float,
default=0.0,
help='''right to left weight for attention rescoring
decode mode''')
parser.add_argument('--override_config',
action='append',
default=[],
help="override yaml config")
parser.add_argument('--word',
default='',
type=str,
help='word file, only used for hlg decode')
parser.add_argument('--hlg',
default='',
type=str,
help='hlg file, only used for hlg decode')
parser.add_argument('--lm_scale',
type=float,
default=0.0,
help='lm scale for hlg attention rescore decode')
parser.add_argument('--decoder_scale',
type=float,
default=0.0,
help='lm scale for hlg attention rescore decode')
parser.add_argument('--r_decoder_scale',
type=float,
default=0.0,
help='lm scale for hlg attention rescore decode')
parser.add_argument(
'--context_bias_mode',
type=str,
default='',
help='''Context bias mode, selectable from the following
option: decoding-graph, deep-biasing''')
parser.add_argument('--context_list_path',
type=str,
default='',
help='Context list path')
parser.add_argument('--context_graph_score',
type=float,
default=0.0,
help='''The higher the score, the greater the degree of
bias using decoding-graph for biasing''')
parser.add_argument('--use_lora',
type=bool,
default=False,
help='''Whether to use lora for biasing''')
parser.add_argument("--lora_ckpt_path",
default=None,
type=str,
help="lora checkpoint path.")
parser.add_argument('--task',
type=str,
default='asr',
help='Context list path')
parser.add_argument('--lang',
type=str,
default='zh',
help='Context list path')
args = parser.parse_args()
print(args)
return args
def main():
args = get_args()
logging.basicConfig(level=logging.DEBUG,
format='%(asctime)s %(levelname)s %(message)s')
set_random_seed(777)
if args.gpu != -1:
# remain the original usage of gpu
args.device = "cuda"
if "cuda" in args.device:
os.environ['CUDA_VISIBLE_DEVICES'] = str(args.gpu)
with open(args.config, 'r') as fin:
configs = yaml.load(fin, Loader=yaml.FullLoader)
if len(args.override_config) > 0:
configs = override_config(configs, args.override_config)
configs['dataset_conf']['filter_conf']['filter_no_extra_info'] = False
test_conf = copy.deepcopy(configs['dataset_conf'])
test_conf['filter_conf']['max_length'] = 3000 # whisper最长处理30s 102400
test_conf['filter_conf']['min_length'] = 0
test_conf['filter_conf']['token_max_length'] = 102400
test_conf['filter_conf']['token_min_length'] = 0
test_conf['filter_conf']['max_output_input_ratio'] = 102400
test_conf['filter_conf']['min_output_input_ratio'] = 0
test_conf['speed_perturb'] = False
test_conf['spec_aug'] = False
test_conf['spec_sub'] = False
test_conf['spec_trim'] = False
test_conf['shuffle'] = True
test_conf['sort'] = False
test_conf['cycle'] = 1
test_conf['list_shuffle'] = True
if 'fbank_conf' in test_conf:
test_conf['fbank_conf']['dither'] = 0.0
elif 'mfcc_conf' in test_conf:
test_conf['mfcc_conf']['dither'] = 0.0
test_conf['batch_conf']['batch_type'] = "static"
test_conf['batch_conf']['batch_size'] = 1
test_conf['split_num'] = 1
tokenizer = init_tokenizer(configs)
test_dataset = Dataset(args.data_type,
args.test_data,
tokenizer,
test_conf,
partition=False)
test_data_loader = DataLoader(test_dataset,
batch_size=None,
num_workers=args.num_workers)
# Init asr model from configs
args.jit = False
model, configs = init_model(args, configs)
device = torch.device(args.device)
model:LLMASR_Model = model.to(device)
model.eval()
dtype = torch.float32
if args.dtype == 'fp16':
dtype = torch.float16
elif args.dtype == 'bf16':
dtype = torch.bfloat16
logging.info("compute dtype is {}".format(dtype))
context_graph = None
if 'decoding-graph' in args.context_bias_mode:
context_graph = ContextGraph(args.context_list_path,
tokenizer.symbol_table,
configs['tokenizer_conf']['bpe_path'],
args.context_graph_score)
_, blank_id = get_blank_id(configs, tokenizer.symbol_table)
logging.info("blank_id is {}".format(blank_id))
# TODO(Dinghao Zhou): Support RNN-T related decoding
# TODO(Lv Xiang): Support k2 related decoding
# TODO(Kaixun Huang): Support context graph
files = {}
modes = ['llmasr_decode']
for mode in modes:
dir_name = os.path.join(args.result_dir, mode)
os.makedirs(dir_name, exist_ok=True)
file_name = os.path.join(dir_name, 'text')
files[mode] = open(file_name, 'w', encoding='utf-8')
max_format_len = max([len(mode) for mode in args.modes])
# Get prompt config
from gxl_ai_utils.utils import utils_file
global_prompt_dict = utils_file.load_dict_from_yaml('conf/prompt_stage4.yaml')
with torch.cuda.amp.autocast(enabled=True,
dtype=dtype,
cache_enabled=False):
with torch.no_grad():
# logging.info(f'utt_num: {utt_num}')
for batch_idx, batch in enumerate(test_data_loader):
keys = batch["keys"]
feats = batch["feats"].to(device)
target = batch["target"].to(device)
feats_lengths = batch["feats_lengths"].to(device)
target_lengths = batch["target_lengths"].to(device)
batch_size = feats.size(0)
import random
if '><' in args.task:
args.task = args.task.replace('><', '> <')
if args.task == "<TRANSCRIBE>" or args.task == "<transcribe>":
is_truncation = False
else:
is_truncation = True
random_index = random.randint(0, len(global_prompt_dict[args.task])-1)
prompt = global_prompt_dict[args.task][random_index]
# print(args.task, prompt)
res_text = model.generate(wavs=feats, wavs_len=feats_lengths, prompt=prompt)
for mode in modes:
line = "{}\t{}".format(keys[0], res_text[0])
files[mode].write(line+'\n')
utils_file.logging_print( '{} {} {}'.format(batch_idx, keys[0], res_text[0]))
if batch_idx % 100 == 0:
for mode, f in files.items():
f.flush() # 强制将缓冲区内容刷新到文件
# if batch_idx >= 1000 and is_truncation:
# utils_file.logging_info('采用截断至3000的策略')
# break
for mode, f in files.items():
f.flush() # 强制将缓冲区内容刷新到文件
f.close()
if __name__ == '__main__':
main()
|