File size: 12,191 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
# Copyright (c) 2023 Binbin Zhang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Dict, List, Tuple

import torch
from torch.nn.utils.rnn import pad_sequence

from wenet.transformer.asr_model import ASRModel
from wenet.transformer.ctc import CTC
from wenet.transformer.decoder import TransformerDecoder
from wenet.transformer.encoder import TransformerEncoder
from wenet.utils.common import (IGNORE_ID, add_sos_eos, reverse_pad_list)


class K2Model(ASRModel):

    def __init__(
            self,
            vocab_size: int,
            encoder: TransformerEncoder,
            decoder: TransformerDecoder,
            ctc: CTC,
            ctc_weight: float = 0.5,
            ignore_id: int = IGNORE_ID,
            reverse_weight: float = 0.0,
            lsm_weight: float = 0.0,
            length_normalized_loss: bool = False,
            lfmmi_dir: str = '',
            special_tokens: dict = None,
            device: torch.device = torch.device("cuda"),
    ):
        super().__init__(vocab_size,
                         encoder,
                         decoder,
                         ctc,
                         ctc_weight,
                         ignore_id,
                         reverse_weight,
                         lsm_weight,
                         length_normalized_loss,
                         special_tokens=special_tokens)
        self.lfmmi_dir = lfmmi_dir
        self.device = device
        if self.lfmmi_dir != '':
            self.load_lfmmi_resource()

    @torch.jit.unused
    def _forward_ctc(
            self, encoder_out: torch.Tensor, encoder_mask: torch.Tensor,
            text: torch.Tensor,
            text_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        loss_ctc, ctc_probs = self._calc_lfmmi_loss(encoder_out, encoder_mask,
                                                    text)
        return loss_ctc, ctc_probs

    @torch.jit.unused
    def load_lfmmi_resource(self):
        try:
            import icefall
        except ImportError:
            print('Error: Failed to import icefall')
        with open('{}/tokens.txt'.format(self.lfmmi_dir), 'r') as fin:
            for line in fin:
                arr = line.strip().split()
                if arr[0] == '<sos/eos>':
                    self.sos_eos_id = int(arr[1])
        device = torch.device(self.device)
        self.graph_compiler = icefall.mmi_graph_compiler.MmiTrainingGraphCompiler(
            self.lfmmi_dir,
            device=device,
            oov="<UNK>",
            sos_id=self.sos_eos_id,
            eos_id=self.sos_eos_id,
        )
        self.lfmmi = icefall.mmi.LFMMILoss(
            graph_compiler=self.graph_compiler,
            den_scale=1,
            use_pruned_intersect=False,
        )
        self.word_table = {}
        with open('{}/words.txt'.format(self.lfmmi_dir), 'r') as fin:
            for line in fin:
                arr = line.strip().split()
                assert len(arr) == 2
                self.word_table[int(arr[1])] = arr[0]

    @torch.jit.unused
    def _calc_lfmmi_loss(self, encoder_out, encoder_mask, text):
        try:
            import k2
        except ImportError:
            print('Error: Failed to import k2')
        ctc_probs = self.ctc.log_softmax(encoder_out)
        supervision_segments = torch.stack((
            torch.arange(len(encoder_mask)),
            torch.zeros(len(encoder_mask)),
            encoder_mask.squeeze(dim=1).sum(dim=1).to('cpu'),
        ), 1).to(torch.int32)
        dense_fsa_vec = k2.DenseFsaVec(
            ctc_probs,
            supervision_segments,
            allow_truncate=3,
        )
        text = [
            ' '.join([self.word_table[j.item()] for j in i if j != -1])
            for i in text
        ]
        loss = self.lfmmi(dense_fsa_vec=dense_fsa_vec, texts=text) / len(text)
        return loss, ctc_probs

    def load_hlg_resource_if_necessary(self, hlg, word):
        try:
            import k2
        except ImportError:
            print('Error: Failed to import k2')
        if not hasattr(self, 'hlg'):
            device = torch.device(self.device)
            self.hlg = k2.Fsa.from_dict(torch.load(hlg, map_location=device))
        if not hasattr(self.hlg, "lm_scores"):
            self.hlg.lm_scores = self.hlg.scores.clone()
        if not hasattr(self, 'word_table'):
            self.word_table = {}
            with open(word, 'r') as fin:
                for line in fin:
                    arr = line.strip().split()
                    assert len(arr) == 2
                    self.word_table[int(arr[1])] = arr[0]

    @torch.no_grad()
    def hlg_onebest(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
        hlg: str = '',
        word: str = '',
        symbol_table: Dict[str, int] = None,
    ) -> List[int]:
        try:
            import icefall
        except ImportError:
            print('Error: Failed to import icefall')
        self.load_hlg_resource_if_necessary(hlg, word)
        encoder_out, encoder_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks,
            simulate_streaming)  # (B, maxlen, encoder_dim)
        ctc_probs = self.ctc.log_softmax(
            encoder_out)  # (1, maxlen, vocab_size)
        supervision_segments = torch.stack(
            (torch.arange(len(encoder_mask)), torch.zeros(len(encoder_mask)),
             encoder_mask.squeeze(dim=1).sum(dim=1).cpu()),
            1,
        ).to(torch.int32)
        lattice = icefall.decode.get_lattice(
            nnet_output=ctc_probs,
            decoding_graph=self.hlg,
            supervision_segments=supervision_segments,
            search_beam=20,
            output_beam=7,
            min_active_states=30,
            max_active_states=10000,
            subsampling_factor=4)
        best_path = icefall.decode.one_best_decoding(lattice=lattice,
                                                     use_double_scores=True)
        hyps = icefall.utils.get_texts(best_path)
        hyps = [[symbol_table[k] for j in i for k in self.word_table[j]]
                for i in hyps]
        return hyps

    @torch.no_grad()
    def hlg_rescore(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
        lm_scale: float = 0,
        decoder_scale: float = 0,
        r_decoder_scale: float = 0,
        hlg: str = '',
        word: str = '',
        symbol_table: Dict[str, int] = None,
    ) -> List[int]:
        try:
            import k2
            import icefall
        except ImportError:
            print('Error: Failed to import k2 & icefall')
        self.load_hlg_resource_if_necessary(hlg, word)
        device = speech.device
        encoder_out, encoder_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks,
            simulate_streaming)  # (B, maxlen, encoder_dim)
        ctc_probs = self.ctc.log_softmax(
            encoder_out)  # (1, maxlen, vocab_size)
        supervision_segments = torch.stack(
            (torch.arange(len(encoder_mask)), torch.zeros(len(encoder_mask)),
             encoder_mask.squeeze(dim=1).sum(dim=1).cpu()),
            1,
        ).to(torch.int32)
        lattice = icefall.decode.get_lattice(
            nnet_output=ctc_probs,
            decoding_graph=self.hlg,
            supervision_segments=supervision_segments,
            search_beam=20,
            output_beam=7,
            min_active_states=30,
            max_active_states=10000,
            subsampling_factor=4)
        nbest = icefall.decode.Nbest.from_lattice(
            lattice=lattice,
            num_paths=100,
            use_double_scores=True,
            nbest_scale=0.5,
        )
        nbest = nbest.intersect(lattice)
        assert hasattr(nbest.fsa, "lm_scores")
        assert hasattr(nbest.fsa, "tokens")
        assert isinstance(nbest.fsa.tokens, torch.Tensor)

        tokens_shape = nbest.fsa.arcs.shape().remove_axis(1)
        tokens = k2.RaggedTensor(tokens_shape, nbest.fsa.tokens)
        tokens = tokens.remove_values_leq(0)
        hyps = tokens.tolist()

        # cal attention_score
        hyps_pad = pad_sequence([
            torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps
        ], True, self.ignore_id)  # (beam_size, max_hyps_len)
        ori_hyps_pad = hyps_pad
        hyps_lens = torch.tensor([len(hyp) for hyp in hyps],
                                 device=device,
                                 dtype=torch.long)  # (beam_size,)
        hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
        hyps_lens = hyps_lens + 1  # Add <sos> at begining
        encoder_out_repeat = []
        tot_scores = nbest.tot_scores()
        repeats = [tot_scores[i].shape[0] for i in range(tot_scores.dim0)]
        for i in range(len(encoder_out)):
            encoder_out_repeat.append(encoder_out[i:i + 1].repeat(
                repeats[i], 1, 1))
        encoder_out = torch.concat(encoder_out_repeat, dim=0)
        encoder_mask = torch.ones(encoder_out.size(0),
                                  1,
                                  encoder_out.size(1),
                                  dtype=torch.bool,
                                  device=device)
        # used for right to left decoder
        r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
        r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos,
                                    self.ignore_id)
        reverse_weight = 0.5
        decoder_out, r_decoder_out, _ = self.decoder(
            encoder_out, encoder_mask, hyps_pad, hyps_lens, r_hyps_pad,
            reverse_weight)  # (beam_size, max_hyps_len, vocab_size)
        decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
        decoder_out = decoder_out
        # r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
        # conventional transformer decoder.
        r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
        r_decoder_out = r_decoder_out

        decoder_scores = torch.tensor([
            sum([decoder_out[i, j, hyps[i][j]] for j in range(len(hyps[i]))])
            for i in range(len(hyps))
        ],
                                      device=device)  # noqa
        r_decoder_scores = []
        for i in range(len(hyps)):
            score = 0
            for j in range(len(hyps[i])):
                score += r_decoder_out[i, len(hyps[i]) - j - 1, hyps[i][j]]
            score += r_decoder_out[i, len(hyps[i]), self.eos]
            r_decoder_scores.append(score)
        r_decoder_scores = torch.tensor(r_decoder_scores, device=device)

        am_scores = nbest.compute_am_scores()
        ngram_lm_scores = nbest.compute_lm_scores()
        tot_scores = am_scores.values + lm_scale * ngram_lm_scores.values + \
            decoder_scale * decoder_scores + r_decoder_scale * r_decoder_scores
        ragged_tot_scores = k2.RaggedTensor(nbest.shape, tot_scores)
        max_indexes = ragged_tot_scores.argmax()
        best_path = k2.index_fsa(nbest.fsa, max_indexes)
        hyps = icefall.utils.get_texts(best_path)
        hyps = [[symbol_table[k] for j in i for k in self.word_table[j]]
                for i in hyps]
        return hyps