File size: 33,785 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
import logging
import os

import torchaudio
import torch
from peft import LoraConfig, TaskType, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer

from wenet.transformer.encoder import TransformerEncoder
from wenet.llm_asr.utils4llmasr import *
from gxl_ai_utils.utils import utils_file

from wenet.llm_asr.downsampler import get_downsampler, LyzConv1dSubsampling
from wenet.utils.mask import make_pad_mask


# import torch_npu
# from torch_npu.contrib import transfer_to_npu

# from msprobe.pytorch import seed_all,PrecisionDebugger

class LLMASR_Model(nn.Module):
    def __init__(self,
                 encoder,
                 encoder_output_dim,
                 llm_path,
                 lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1,
                 prompt_pattern="{}:<Speech><SpeechHere></Speech>",
                 # "USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:"
                 is_inference=False,
                 downsample_rate=1,
                 llm_embed_dim=4096,
                 task_num=2,
                 adapter_type='lyz',
                 speech_token_num=0,
                 train_speech_out=False):
        """"""
        super().__init__()
        self.downsample_rate = downsample_rate

        self.encoder = encoder
        self.ln_speech = nn.LayerNorm(encoder_output_dim)

        # 连接层, 51.6M
        if adapter_type == 'gxl':
            self.speech_transformer = TransformerEncoder(
                input_size=encoder_output_dim,
                output_size=encoder_output_dim,
                attention_heads=4,
                linear_units=2560,
                num_blocks=4,
                dropout_rate=0.1,
                positional_dropout_rate=0.1,
                attention_dropout_rate=0.0,
                input_layer="linear",
                pos_enc_layer_type="abs_pos",
                normalize_before=True
            )
        else:
            self.speech_transformer = None

        # LLM,
        self.low_resource = False
        if not self.low_resource:
            self.llama_model = AutoModelForCausalLM.from_pretrained(
                llm_path,
                # torch_dtype=torch.float32 if is_inference else torch.float16,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True,
                output_hidden_states=True,
            )
        else:
            self.llama_model = AutoModelForCausalLM.from_pretrained(
                llm_path,
                torch_dtype=torch.float16,
                load_in_8bit=True,
                device_map="auto",
                trust_remote_code=True,
                output_hidden_states=True,
            )

        self.max_length = 300
        self.min_length = 1
        self.num_beams = 4
        self.do_sample = True
        self.top_p = 0.0
        self.top_k = 0
        self.repetition_penalty = 1.05
        self.length_penalty = 1.0
        self.temperature = 1.0
        self.IGNORE_ID = -100

        # lora
        self.lora = lora
        if lora:
            utils_file.logging_limit_print("耿雪龙: 使用lora了")
            #target_modules = ['w_pack', 'o_proj', 'gate_proj', 'down_proj']
            target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'down_proj']
            if is_inference:
                self.peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM,
                    inference_mode=True,
                    r=lora_rank,
                    lora_alpha=lora_alpha,
                    lora_dropout=lora_dropout,
                    target_modules=target_modules,
                )
            else:
                self.peft_config = LoraConfig(
                    task_type=TaskType.CAUSAL_LM,
                    inference_mode=False,
                    r=lora_rank,
                    lora_alpha=lora_alpha,
                    lora_dropout=lora_dropout,
                    target_modules=target_modules,
                )
            self.llama_model = get_peft_model(self.llama_model, self.peft_config)

        # tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(
            llm_path, use_fast=False, trust_remote_code=True)
        """
        设置分词器的pad_token和padding的方向。
        """
        self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
        self.tokenizer.padding_side = "right"

        if hasattr(self.llama_model.config, 'hidden_size'):
            utils_file.logging_limit_print(
                f"self.llama_model.config.hidden_size: {self.llama_model.config.hidden_size}")
            if adapter_type == 'lyz':
                self.down_sample_2 = LyzConv1dSubsampling(encoder_output_dim, self.llama_model.config.hidden_size)
            elif adapter_type == 'gxl':
                self.down_sample_2 = get_downsampler(downsample_rate, encoder_output_dim)
                self.speech_llama_proj = nn.Linear(
                    encoder_output_dim, self.llama_model.config.hidden_size)
            # self.task_embeddings = torch.nn.Embedding(task_num, self.llama_model.config.hidden_size)
        else:
            raise NotImplementedError("self.llama_model.config.hidden_size not exist")

        self.embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens
        self.lm_head = self.llama_model.model.lm_head if self.lora else self.llama_model.lm_head

        self.speech_token_num = speech_token_num
        # init speech token module
        if speech_token_num > 0:
            utils_file.logging_info(f'耿雪龙: 进行语音token生成任务, speech_token_num: {speech_token_num}')
            self.speech_token_emded = torch.nn.Embedding(speech_token_num + 2, self.llama_model.config.hidden_size)
            self.speaker_head = torch.nn.Linear(self.llama_model.config.hidden_size, speech_token_num)
        else:
            # 不做任何处理
            self.speaker_head = nn.Identity()
            self.speech_token_emded = nn.Identity()
        self.train_speech_out = train_speech_out
        utils_file.logging_info(f'耿雪龙: 是否进行语音输出训练:{self.train_speech_out}')
        self.loss_fct = CrossEntropyLoss(reduction='mean')
        # self.debugger = PrecisionDebugger(config_path='./do_align_test/config_gpu.json', model=self.encoder)

    def get_label_embedding(self, labels, labels_lengths):
        """"""
        labels_pad_mask = make_pad_mask(labels_lengths)  # B, L
        labels = labels.masked_fill(labels_pad_mask, 0)
        labels_embeds = self.embed_tokens(labels)
        labels_target = labels.masked_fill(labels_pad_mask, self.IGNORE_ID)  # B, L
        labels_mask = ~labels_pad_mask
        return labels_embeds, labels_target, labels_mask

    def get_speech_token_label_embedding(self, speech_token_labels, speech_tokens_length):
        """"""
        speech_tokens_pad_mask = make_pad_mask(speech_tokens_length)  # B, L
        speech_token_labels = speech_token_labels.masked_fill(speech_tokens_pad_mask, 0)
        speech_token_labels_embeds = self.speech_token_emded(speech_token_labels)
        utils_file.logging_limit_print(f'进行speech_token_labels修改,修改前 speech_token_labels',
                                       speech_token_labels.shape, speech_token_labels[0][-1], speech_token_labels[0][0])
        speech_token_labels = speech_token_labels + 152064
        utils_file.logging_limit_print(f'进行speech_token_labels修改,修改后 speech_token_labels',
                                       speech_token_labels.shape, speech_token_labels[0][-1], speech_token_labels[0][0])
        speech_token_labels_target = speech_token_labels.masked_fill(speech_tokens_pad_mask, self.IGNORE_ID)  # B, L
        speech_token_labels_mask = ~speech_tokens_pad_mask
        return speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask

    def forward(self,
                batch,
                device,
                ):
        """"""
        rank = int(os.environ.get('RANK', 0))
        # wavs = batch['feats'].to(device)
        # wavs_len = batch['feats_lengths'].to(device)
        # if rank == 0:
        #     utils_file.logging_limit_print(
        #         f'wavs shape: {wavs.shape},第一帧的前20个数字:\n{wavs[0][0][:20]}')

        output_type = batch['output_type']
        assert output_type in ['text', 'speech2text_token', 'text2token'], f"output_type:{output_type} not support"

        # utils_file.logging_limit_print('进入 llmasr forward() ,首先来看一下输入')
        # utils_file.logging_limit_print('wavs.shape:', wavs.shape)
        # utils_file.logging_limit_print('wavs_len.shape:', wavs_len.shape)
        # utils_file.logging_limit_print('wavs_len:', wavs_len)
        # utils_file.logging_limit_print('labels.shape:', labels.shape)
        # utils_file.logging_limit_print('labels_lengths.shape:', labels_lengths.shape)
        # utils_file.logging_limit_print('output_type:', output_type)
        # utils_file.logging_limit_print('观看结束')

        # speech inputs
        if output_type == 'text' or output_type == 'speech2text_token':
            wavs = batch['feats'].to(device)
            wavs_len = batch['feats_lengths'].to(device)
            speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
            speech_target = torch.full(speech_masks.shape, self.IGNORE_ID).to(
                speech_embeds.device)
            utils_file.logging_limit_print('进入 llmasr forward() ,首先来看一下输入')
            utils_file.logging_limit_print('wavs.shape:', wavs.shape)
            utils_file.logging_limit_print('wavs_len.shape:', wavs_len.shape)
            utils_file.logging_limit_print('wavs_len:', wavs_len)
            utils_file.logging_limit_print('output_type:', output_type)
            utils_file.logging_limit_print('speech_embeds:', speech_embeds.shape)
            utils_file.logging_limit_print('观看结束')  # haha
        else:
            labels = batch['target'].to(device)
            labels_lengths = batch['target_lengths'].to(device)
            #  text 2 token ,拿到文本序列
            labels_pad_mask = make_pad_mask(labels_lengths)  # B, L
            labels = labels.masked_fill(labels_pad_mask, 0)
            speech_embeds = self.embed_tokens(labels)  # B, L, D
            speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
                speech_embeds.device)
            speech_masks = ~labels_pad_mask

        # add bos and eos
        speech_embeds, speech_masks, speech_target = self._add_bos_eos(0 + self.speech_token_num,
                                                                       1 + self.speech_token_num,
                                                                       speech_embeds, speech_masks, speech_target)

        # prompt
        if 'prompt' in batch:
            prompt = batch['prompt'].to(device)
            prompt_lengths = batch['prompt_lengths'].to(device)
            prompt_pad_mask = make_pad_mask(prompt_lengths)  # B, L
            prompt = prompt.masked_fill(prompt_pad_mask, self.tokenizer.eos_token_id)
            prompt_embeds = self.embed_tokens(prompt)  # B, L, D
            prompt_target = torch.full(prompt.shape, self.IGNORE_ID).to(
                speech_embeds.device)  # B, L
            prompt_mask = ~prompt_pad_mask
        else:
            raise ValueError('prompt is not in batch')

        if output_type == 'speech2text_token':
            labels = batch['target'].to(device)
            labels_lengths = batch['target_lengths'].to(device)
            speech_token_labels = batch['speech_tokens'].to(device)
            speech_tokens_length = batch['speech_tokens_length'].to(device)

            utils_file.logging_limit_print('进入 llmasr forward() ,首先来一下目标')
            utils_file.logging_limit_print('labels.shape:', labels.shape)
            utils_file.logging_limit_print('labels_lengths.shape:', labels_lengths.shape)
            utils_file.logging_limit_print('labels_lengths:', labels_lengths)
            utils_file.logging_limit_print('speech_token_labels.shape:', speech_token_labels.shape)
            utils_file.logging_limit_print('speech_tokens_length.shape:', speech_tokens_length.shape)
            utils_file.logging_limit_print('speech_tokens_length:', speech_tokens_length)
            utils_file.logging_limit_print('观看结束')

            labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)
            speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask = self.get_speech_token_label_embedding(
                speech_token_labels, speech_tokens_length)

            # concat
            inputs_embeds = torch.cat([prompt_embeds, speech_embeds,
                                       labels_embeds, speech_token_labels_embeds], dim=1)
            attention_mask = torch.cat([prompt_mask, speech_masks,
                                        labels_mask, speech_token_labels_mask], dim=1)
            target = torch.cat([prompt_target, speech_target,
                                labels_target, speech_token_labels_target], dim=1)
        elif output_type == "text2token":
            speech_token_labels = batch['speech_tokens'].to(device)
            speech_tokens_length = batch['speech_tokens_length'].to(device)
            speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask = self.get_speech_token_label_embedding(
                speech_token_labels, speech_tokens_length)

            inputs_embeds = torch.cat([prompt_embeds, speech_embeds,
                                       speech_token_labels_embeds], dim=1)
            attention_mask = torch.cat([prompt_mask, speech_masks,
                                        speech_token_labels_mask], dim=1)
            target = torch.cat([prompt_target, speech_target,
                                speech_token_labels_target], dim=1)
        elif output_type == "text":
            labels = batch['target'].to(device)
            labels_lengths = batch['target_lengths'].to(device)
            labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)

            # concat
            inputs_embeds = torch.cat([prompt_embeds, speech_embeds,
                                       labels_embeds], dim=1)
            attention_mask = torch.cat([prompt_mask, speech_masks,
                                        labels_mask], dim=1)
            target = torch.cat([prompt_target, speech_target,
                                labels_target], dim=1)
        else:
            raise NotImplementedError(f'output_type {output_type} not support')
        utils_file.logging_limit_print(f'耿雪龙 output_type: {output_type}')

        position_ids = attention_mask.long().cumsum(-1) - 1
        position_ids.masked_fill_(attention_mask == 0, 1)
        outputs = self.llama_model(
            inputs_embeds=inputs_embeds,
            # labels=target,
            attention_mask=attention_mask,
            position_ids=position_ids.to(inputs_embeds.device)
        )
        hidden_states = outputs['hidden_states'][-1]
        logits = self.lm_head(hidden_states)
        logits2 = self.speaker_head(hidden_states)  # speech_head
        combined_logits = torch.cat([logits, logits2], dim=-1)
        shift_logits = combined_logits[..., :-1, :].contiguous()
        shift_target = target[..., 1:].contiguous()
        shift_logits = shift_logits.view(-1, combined_logits.shape[-1])  # 注意这里维度的调整,根据logits2的维度相应改变
        shift_target = shift_target.view(-1)
        shift_target = shift_target.to(shift_logits.device)
        loss = self.loss_fct(shift_logits, shift_target)
        loss.requires_grad_(True)
        return {"loss": loss}

    def generate(
            self,
            wavs,
            wavs_len,
            prompt,
    ):
        speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
        speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
                                                           speech_embeds, speech_masks, None)
        prompt = self.tokenizer([prompt], return_tensors="pt"
                                )['input_ids'].to(speech_embeds.device)
        prompt_embeds = self.embed_tokens(prompt)

        embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
        atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)

        if self.embed_tokens.weight.dtype == torch.float16 or self.embed_tokens.weight.dtype == torch.bfloat16:
            utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
            # embeds = embeds.to(torch.float16)
            embeds = embeds.to(torch.bfloat16)
            atts = atts.to(torch.bfloat16)
        outputs = self.llama_model.generate(
            inputs_embeds=embeds,
            max_new_tokens=self.max_length,
            num_beams=self.num_beams,
            do_sample=self.do_sample,
            min_length=self.min_length,
            top_p=self.top_p,
            top_k=self.top_k,
            repetition_penalty=self.repetition_penalty,
            length_penalty=self.length_penalty,
            temperature=self.temperature,
            attention_mask=atts,
            eos_token_id=151643,
            pad_token_id=-100,
        )

        # 获取生成的token IDs
        # token_ids = outputs[0].tolist()  # 假设batch_size=1,取第一个输出
        # 将token IDs转换为字符串
        # tokens = [self.tokenizer.decode([token_id], skip_special_tokens=True) for token_id in token_ids]
        # 打印token列表和字符串列表
        # print("Token IDs:", token_ids)
        # print("Tokens:", tokens)

        # 使用tokenizer将token IDs批量转换为字符串
        # output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
        # print("Output Text:", output_text)

        output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
        # 处理token,为英文单词前加上空格
        # processed_tokens = []
        # for token in tokens:
        #     # 检查是否为英文单词(简单判断:是否全部由字母组成)
        #     if token.isalpha() and token[0].isascii():
        #         processed_tokens.append(" " + token)  # 英文单词前加空格
        #     else:
        #         processed_tokens.append(token)  # 其他token保持不变
        # output_text = "".join(processed_tokens)
        return output_text

    def generate4seech_token(
            self,
            wavs,
            wavs_len,
            prompt,
    ):
        speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
        speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
                                                           speech_embeds, speech_masks, None)
        prompt = self.tokenizer([prompt], return_tensors="pt"
                                )['input_ids'].to(speech_embeds.device)
        prompt_embeds = self.embed_tokens(prompt)

        embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
        atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)

        if self.embed_tokens.weight.dtype == torch.float16:
            utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
            embeds = embeds.to(torch.float16)
            atts = atts.half()

        outputs = self.llama_model.generate(
            inputs_embeds=embeds,
            max_new_tokens=self.max_length,
            num_beams=self.num_beams,
            do_sample=self.do_sample,
            min_length=self.min_length,
            top_p=self.top_p,
            top_k=self.top_k,
            repetition_penalty=self.repetition_penalty,
            length_penalty=self.length_penalty,
            temperature=self.temperature,
            attention_mask=atts,
            eos_token_id=151643,
            pad_token_id=-100,
        )
        output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)

        return output_text

    def get_embedding_from_wav(self, wavs, wavs_len):
        """
        return:
        wav_embedding: (b, l, v)
        wav_mask:  (b, l), wav为有效值的位置为true
        """
        # utils_file.logging_limit_print('get_embedding_from_wav(): wavs.shape:', wavs.shape)
        # utils_file.logging_limit_print('get_embedding_from_wav(): wavs_len.shape:', wavs_len.shape)
        rank = int(os.environ.get('RANK', 0))
        # self.debugger.start()
        encoder_out, encoder_mask = self.encoder(wavs, wavs_len)
        # self.debugger.stop()
        # self.debugger.step()
        if rank == 0:
            utils_file.logging_limit_print(
                f'encoder out shape: {encoder_out.shape},encoder的第一帧的前20个数字:\n{encoder_out[0][0][:20]}')

        # utils_file.logging_limit_print(
        #     'get_embedding_from_wav(): speech_embeds.shape,by  self.encoder(wavs, wavs_len):',
        #     encoder_out.shape)

        speech_embeds, encoder_mask = self.down_sample_2(encoder_out, encoder_mask)
        if rank == 0:
            utils_file.logging_limit_print(
                f'out of down_sample_2 shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n{speech_embeds[0][0][:20]}')

        # utils_file.logging_limit_print(
        #     'get_embedding_from_wav(): speech_embeds.shape,by  self.down_sample_2(speech_embeds):', speech_embeds.shape)
        # # max_utt_len = speech_embeds.size(1)
        # filled_wavs_len = torch.ones(speech_embeds.size(0)) * max_utt_len
        # filled_wavs_len = filled_wavs_len.to(speech_embeds.device)
        if self.speech_transformer is not None:
            filled_wavs_len = encoder_mask.squeeze(1).sum(-1)
            speech_embeds, encoder_mask = self.speech_transformer(speech_embeds, filled_wavs_len)
            if rank == 0:
                utils_file.logging_limit_print(
                    f'out of link shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n {speech_embeds[0][0][:20]}')

            # utils_file.logging_limit_print(
            #     'get_embedding_from_wav(): speech_embeds.shape,by  self.speech_transformer(speech_embeds, speech_lens):',
            #     speech_embeds.shape)
            speech_embeds = self.speech_llama_proj(speech_embeds)
            if rank == 0:
                utils_file.logging_limit_print(
                    f'out of speech_llama_proj shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n {speech_embeds[0][0][:20]}')

        # utils_file.logging_limit_print(
        #     'get_embedding_from_wav(): speech_embeds.shape,by  self.speech_llama_proj(speech_embeds):',
        #     speech_embeds.shape)

        return speech_embeds, encoder_mask.squeeze(1)

    def get_embedding_from_text(self, text):
        text_id = self.tokenizer(
            text,
            return_tensors="pt",
            add_special_tokens=False
        ).to(
            self.embed_tokens.weight.device).input_ids
        text_embeds = self.embed_tokens(text_id)
        return text_embeds

    def get_embeds_from_wav_path(self, wav_path):
        wav_i2_path = wav_path
        utils_file.logging_limit_print('get_embeds_from_wav_path(): wav_i2_path:', wav_i2_path)
        waveform_i2, _ = torchaudio.load(wav_i2_path)
        utils_file.logging_limit_print('get_embeds_from_wav_path(): waveform_i2.shape:', waveform_i2.shape)
        if len(waveform_i2.shape) != 1:
            waveform_i2 = waveform_i2[0]
        waveform_i2 = waveform_i2.to(self.embed_tokens.weight.device)
        wavs_len_i2 = torch.tensor([len(waveform_i2)], device=self.embed_tokens.weight.device, dtype=torch.int32)
        wavs_i2 = waveform_i2.unsqueeze(0)
        sample_i2_embeds = self.get_embedding_from_wav(wavs_i2, wavs_len_i2)
        utils_file.logging_limit_print('get_embeds_from_wav_path(): sample_i2_embeds.shape:', sample_i2_embeds.shape)
        return sample_i2_embeds

    def _add_bos_eos(self, bos, eos, inputs_embeds, attention_mask, target=None):
        B = len(inputs_embeds)
        bos_eos_target = torch.full([B, 1], self.IGNORE_ID).to(inputs_embeds.device)  # B,1
        bos_eos_mask = torch.full([B, 1], True).to(inputs_embeds.device)  # B, 1

        if bos is not None:
            bos_embed = self.speech_token_emded(torch.full([B, 1],
                                                           bos).to(inputs_embeds.device))  # B, 1, D
            inputs_embeds = torch.cat((bos_embed, inputs_embeds), 1)  # B, (1+T), D
            attention_mask = torch.cat((bos_eos_mask, attention_mask), 1)  # B, (1+T)
            if target is not None:
                target = torch.cat((bos_eos_target, target), 1)  # B, (1+T), D

        if eos is not None:
            eos_embed = self.speech_token_emded(torch.full([B, 1],
                                                           eos).to(inputs_embeds.device))  # B, 1, D
            inputs_embeds = torch.cat((inputs_embeds, eos_embed), 1)  # B, (1+T+1), D
            attention_mask = torch.cat((attention_mask, bos_eos_mask), 1)  # B, (1+T+1)
            if target is not None:
                target = torch.cat((target, bos_eos_target), 1)  # B, (1+T+1), D

        return inputs_embeds, attention_mask, target

    def infer_for_speech2text_token(  # speech2text-token
            self,
            wavs,
            wavs_len,
            prompt,
            text=None,
    ):
        if text is not None:
            prompt = torch.cat((prompt, text), dim=1)
        speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
        speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, None,
                                                           speech_embeds, speech_masks, None)
        prompt = self.tokenizer([prompt], return_tensors="pt"
                                )['input_ids'].to(speech_embeds.device)
        prompt_embeds = self.embed_tokens(prompt)
        embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
        atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
        if self.embed_tokens.weight.dtype == torch.float16:
            utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
            embeds = embeds.to(torch.float16)
            atts = atts.half()
        device = wavs.device

        max_len = 300
        hyps = torch.ones([1, 1], dtype=torch.int64,
                          device=device).fill_(1 + self.speech_token_num)  # (B*N, 1)
        llm_out = self.llama_model(
            inputs_embeds=embeds,
            past_key_values=None,
            output_hidden_states=True
        )
        cache = llm_out.past_key_values
        utils_file.logging_limit_print('得到首个cache,开始进行for循环推理')
        token_emb = self.speech_token_emded(hyps[:, -1:])

        for i in range(max_len):
            llm_out = self.llama_model(
                inputs_embeds=token_emb,
                past_key_values=cache,
                output_hidden_states=True
            )
            cache = llm_out.past_key_values
            hidden_states = llm_out.hidden_states[-1]  # 最后一层的
            token_logits_1 = self.lm_head(hidden_states)
            # utils_file.logging_limit_print(f'token_logits_1.shape:{token_logits_1.shape}')
            token_logits_2 = self.speaker_head(hidden_states)
            # utils_file.logging_limit_print(f'token_logits_2.shape:{token_logits_2.shape}')
            big_logits = torch.cat([token_logits_1, token_logits_2], dim=-1)
            # utils_file.logging_limit_print(f'big_logits.shape:{big_logits.shape}')
            logp = torch.nn.functional.log_softmax(big_logits[:, -1, :], dim=-1)  # 取了最后一个
            # utils_file.logging_limit_print(f'logp.shape:{logp.shape}')
            max_index = torch.argmax(logp, dim=-1, keepdim=True)
            # utils_file.logging_limit_print(f'max_index.shape:{max_index.shape}')
            utils_file.logging_limit_print(f'max_index:{max_index}')

            hyps = torch.cat((hyps, max_index),
                             dim=1)  # (B*N, i+1)
            if max_index < 152064:
                token_emb = self.embed_tokens(hyps[:, -1:])
            else:
                if max_index == 152064 + 4096:
                    utils_file.logging_limit_print(f'耿雪龙 遇到token结束符号,结束')
                    break
                token_emb = self.speech_token_emded(hyps[:, -1:])
        best_hyps = hyps[0, :]
        text_res = []
        token_res = []
        for i in best_hyps[1:]:
            if i < 152064:
                text_res.append(i)
            else:
                token_res.append(str((i - 152064).item()))
        str_i = self.tokenizer.decode(text_res, skip_special_tokens=True, add_special_tokens=False)
        return [str_i + " | " + " ".join(token_res)]
        # output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)

    def infer_for_text2token(  # text2token
            self,
            wavs,
            wavs_len,
            prompt,
            text=None,
    ):
        if text is not None:
            prompt = torch.cat((prompt, text), dim=1)
        # speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
        # speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, None,
        #                                                    speech_embeds, speech_masks, None)
        labels_lengths = torch.tensor([len(text)-1], dtype=torch.int64)
        labels = text[:,:-1]
        labels_pad_mask = make_pad_mask(labels_lengths)  # B, L
        labels = labels.masked_fill(labels_pad_mask, 0)
        speech_embeds = self.embed_tokens(labels)  # B, L, D
        speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
            speech_embeds.device)
        speech_masks = ~labels_pad_mask

        prompt = self.tokenizer([prompt], return_tensors="pt"
                                )['input_ids'].to(speech_embeds.device)
        prompt_embeds = self.embed_tokens(prompt)
        embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
        atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
        if self.embed_tokens.weight.dtype == torch.float16:
            utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
            embeds = embeds.to(torch.float16)
            atts = atts.half()
        device = wavs.device

        max_len = 300
        hyps = torch.ones([1, 1], dtype=torch.int64,
                          device=device).fill_()  # (B*N, 1)
        llm_out = self.llama_model(
            inputs_embeds=embeds,
            past_key_values=None,
            output_hidden_states=True
        )
        cache = llm_out.past_key_values
        utils_file.logging_limit_print('得到首个cache,开始进行for循环推理')
        token_emb = self.embed_tokens(hyps[:, -1:])

        for i in range(max_len):
            llm_out = self.llama_model(
                inputs_embeds=token_emb,
                past_key_values=cache,
                output_hidden_states=True
            )
            cache = llm_out.past_key_values
            hidden_states = llm_out.hidden_states[-1]  # 最后一层的
            token_logits_1 = self.lm_head(hidden_states)
            # utils_file.logging_limit_print(f'token_logits_1.shape:{token_logits_1.shape}')
            token_logits_2 = self.speaker_head(hidden_states)
            # utils_file.logging_limit_print(f'token_logits_2.shape:{token_logits_2.shape}')
            big_logits = torch.cat([token_logits_1, token_logits_2], dim=-1)
            # utils_file.logging_limit_print(f'big_logits.shape:{big_logits.shape}')
            logp = torch.nn.functional.log_softmax(big_logits[:, -1, :], dim=-1)  # 取了最后一个
            # utils_file.logging_limit_print(f'logp.shape:{logp.shape}')
            max_index = torch.argmax(logp, dim=-1, keepdim=True)
            # utils_file.logging_limit_print(f'max_index.shape:{max_index.shape}')
            utils_file.logging_limit_print(f'max_index:{max_index}')

            hyps = torch.cat((hyps, max_index),
                             dim=1)  # (B*N, i+1)
            if max_index < 152064:
                token_emb = self.embed_tokens(hyps[:, -1:])
            else:
                if max_index == 152064 + 4096 :
                    utils_file.logging_limit_print(f'耿雪龙 遇到token结束符号,结束')
                    break
                token_emb = self.speech_token_emded(hyps[:, -1:])
        best_hyps = hyps[0, :]
        text_res = []
        token_res = []
        for i in best_hyps[1:]:
            if i < 152064:
                text_res.append(i)
            else:
                token_res.append(str((i - 152064).item()))
        str_i = self.tokenizer.decode(text_res, skip_special_tokens=True, add_special_tokens=False)
        return [str_i + " | " + " ".join(token_res)]
        # output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)