Spaces:
Running
on
Zero
Running
on
Zero
File size: 33,785 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 |
import logging
import os
import torchaudio
import torch
from peft import LoraConfig, TaskType, get_peft_model
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoModelForCausalLM, AutoTokenizer
from wenet.transformer.encoder import TransformerEncoder
from wenet.llm_asr.utils4llmasr import *
from gxl_ai_utils.utils import utils_file
from wenet.llm_asr.downsampler import get_downsampler, LyzConv1dSubsampling
from wenet.utils.mask import make_pad_mask
# import torch_npu
# from torch_npu.contrib import transfer_to_npu
# from msprobe.pytorch import seed_all,PrecisionDebugger
class LLMASR_Model(nn.Module):
def __init__(self,
encoder,
encoder_output_dim,
llm_path,
lora=True, lora_alpha=32, lora_rank=8, lora_dropout=0.1,
prompt_pattern="{}:<Speech><SpeechHere></Speech>",
# "USER: <Speech><SpeechHere></Speech> {}\nASSISTANT:"
is_inference=False,
downsample_rate=1,
llm_embed_dim=4096,
task_num=2,
adapter_type='lyz',
speech_token_num=0,
train_speech_out=False):
""""""
super().__init__()
self.downsample_rate = downsample_rate
self.encoder = encoder
self.ln_speech = nn.LayerNorm(encoder_output_dim)
# 连接层, 51.6M
if adapter_type == 'gxl':
self.speech_transformer = TransformerEncoder(
input_size=encoder_output_dim,
output_size=encoder_output_dim,
attention_heads=4,
linear_units=2560,
num_blocks=4,
dropout_rate=0.1,
positional_dropout_rate=0.1,
attention_dropout_rate=0.0,
input_layer="linear",
pos_enc_layer_type="abs_pos",
normalize_before=True
)
else:
self.speech_transformer = None
# LLM,
self.low_resource = False
if not self.low_resource:
self.llama_model = AutoModelForCausalLM.from_pretrained(
llm_path,
# torch_dtype=torch.float32 if is_inference else torch.float16,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
output_hidden_states=True,
)
else:
self.llama_model = AutoModelForCausalLM.from_pretrained(
llm_path,
torch_dtype=torch.float16,
load_in_8bit=True,
device_map="auto",
trust_remote_code=True,
output_hidden_states=True,
)
self.max_length = 300
self.min_length = 1
self.num_beams = 4
self.do_sample = True
self.top_p = 0.0
self.top_k = 0
self.repetition_penalty = 1.05
self.length_penalty = 1.0
self.temperature = 1.0
self.IGNORE_ID = -100
# lora
self.lora = lora
if lora:
utils_file.logging_limit_print("耿雪龙: 使用lora了")
#target_modules = ['w_pack', 'o_proj', 'gate_proj', 'down_proj']
target_modules = ['q_proj', 'k_proj', 'v_proj', 'o_proj', 'gate_proj', 'down_proj']
if is_inference:
self.peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=True,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
target_modules=target_modules,
)
else:
self.peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=lora_rank,
lora_alpha=lora_alpha,
lora_dropout=lora_dropout,
target_modules=target_modules,
)
self.llama_model = get_peft_model(self.llama_model, self.peft_config)
# tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(
llm_path, use_fast=False, trust_remote_code=True)
"""
设置分词器的pad_token和padding的方向。
"""
self.tokenizer.add_special_tokens({'pad_token': '[PAD]'})
self.tokenizer.padding_side = "right"
if hasattr(self.llama_model.config, 'hidden_size'):
utils_file.logging_limit_print(
f"self.llama_model.config.hidden_size: {self.llama_model.config.hidden_size}")
if adapter_type == 'lyz':
self.down_sample_2 = LyzConv1dSubsampling(encoder_output_dim, self.llama_model.config.hidden_size)
elif adapter_type == 'gxl':
self.down_sample_2 = get_downsampler(downsample_rate, encoder_output_dim)
self.speech_llama_proj = nn.Linear(
encoder_output_dim, self.llama_model.config.hidden_size)
# self.task_embeddings = torch.nn.Embedding(task_num, self.llama_model.config.hidden_size)
else:
raise NotImplementedError("self.llama_model.config.hidden_size not exist")
self.embed_tokens = self.llama_model.model.model.embed_tokens if self.lora else self.llama_model.model.embed_tokens
self.lm_head = self.llama_model.model.lm_head if self.lora else self.llama_model.lm_head
self.speech_token_num = speech_token_num
# init speech token module
if speech_token_num > 0:
utils_file.logging_info(f'耿雪龙: 进行语音token生成任务, speech_token_num: {speech_token_num}')
self.speech_token_emded = torch.nn.Embedding(speech_token_num + 2, self.llama_model.config.hidden_size)
self.speaker_head = torch.nn.Linear(self.llama_model.config.hidden_size, speech_token_num)
else:
# 不做任何处理
self.speaker_head = nn.Identity()
self.speech_token_emded = nn.Identity()
self.train_speech_out = train_speech_out
utils_file.logging_info(f'耿雪龙: 是否进行语音输出训练:{self.train_speech_out}')
self.loss_fct = CrossEntropyLoss(reduction='mean')
# self.debugger = PrecisionDebugger(config_path='./do_align_test/config_gpu.json', model=self.encoder)
def get_label_embedding(self, labels, labels_lengths):
""""""
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
labels_embeds = self.embed_tokens(labels)
labels_target = labels.masked_fill(labels_pad_mask, self.IGNORE_ID) # B, L
labels_mask = ~labels_pad_mask
return labels_embeds, labels_target, labels_mask
def get_speech_token_label_embedding(self, speech_token_labels, speech_tokens_length):
""""""
speech_tokens_pad_mask = make_pad_mask(speech_tokens_length) # B, L
speech_token_labels = speech_token_labels.masked_fill(speech_tokens_pad_mask, 0)
speech_token_labels_embeds = self.speech_token_emded(speech_token_labels)
utils_file.logging_limit_print(f'进行speech_token_labels修改,修改前 speech_token_labels',
speech_token_labels.shape, speech_token_labels[0][-1], speech_token_labels[0][0])
speech_token_labels = speech_token_labels + 152064
utils_file.logging_limit_print(f'进行speech_token_labels修改,修改后 speech_token_labels',
speech_token_labels.shape, speech_token_labels[0][-1], speech_token_labels[0][0])
speech_token_labels_target = speech_token_labels.masked_fill(speech_tokens_pad_mask, self.IGNORE_ID) # B, L
speech_token_labels_mask = ~speech_tokens_pad_mask
return speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask
def forward(self,
batch,
device,
):
""""""
rank = int(os.environ.get('RANK', 0))
# wavs = batch['feats'].to(device)
# wavs_len = batch['feats_lengths'].to(device)
# if rank == 0:
# utils_file.logging_limit_print(
# f'wavs shape: {wavs.shape},第一帧的前20个数字:\n{wavs[0][0][:20]}')
output_type = batch['output_type']
assert output_type in ['text', 'speech2text_token', 'text2token'], f"output_type:{output_type} not support"
# utils_file.logging_limit_print('进入 llmasr forward() ,首先来看一下输入')
# utils_file.logging_limit_print('wavs.shape:', wavs.shape)
# utils_file.logging_limit_print('wavs_len.shape:', wavs_len.shape)
# utils_file.logging_limit_print('wavs_len:', wavs_len)
# utils_file.logging_limit_print('labels.shape:', labels.shape)
# utils_file.logging_limit_print('labels_lengths.shape:', labels_lengths.shape)
# utils_file.logging_limit_print('output_type:', output_type)
# utils_file.logging_limit_print('观看结束')
# speech inputs
if output_type == 'text' or output_type == 'speech2text_token':
wavs = batch['feats'].to(device)
wavs_len = batch['feats_lengths'].to(device)
speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
speech_target = torch.full(speech_masks.shape, self.IGNORE_ID).to(
speech_embeds.device)
utils_file.logging_limit_print('进入 llmasr forward() ,首先来看一下输入')
utils_file.logging_limit_print('wavs.shape:', wavs.shape)
utils_file.logging_limit_print('wavs_len.shape:', wavs_len.shape)
utils_file.logging_limit_print('wavs_len:', wavs_len)
utils_file.logging_limit_print('output_type:', output_type)
utils_file.logging_limit_print('speech_embeds:', speech_embeds.shape)
utils_file.logging_limit_print('观看结束') # haha
else:
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
# text 2 token ,拿到文本序列
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
# add bos and eos
speech_embeds, speech_masks, speech_target = self._add_bos_eos(0 + self.speech_token_num,
1 + self.speech_token_num,
speech_embeds, speech_masks, speech_target)
# prompt
if 'prompt' in batch:
prompt = batch['prompt'].to(device)
prompt_lengths = batch['prompt_lengths'].to(device)
prompt_pad_mask = make_pad_mask(prompt_lengths) # B, L
prompt = prompt.masked_fill(prompt_pad_mask, self.tokenizer.eos_token_id)
prompt_embeds = self.embed_tokens(prompt) # B, L, D
prompt_target = torch.full(prompt.shape, self.IGNORE_ID).to(
speech_embeds.device) # B, L
prompt_mask = ~prompt_pad_mask
else:
raise ValueError('prompt is not in batch')
if output_type == 'speech2text_token':
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
speech_token_labels = batch['speech_tokens'].to(device)
speech_tokens_length = batch['speech_tokens_length'].to(device)
utils_file.logging_limit_print('进入 llmasr forward() ,首先来一下目标')
utils_file.logging_limit_print('labels.shape:', labels.shape)
utils_file.logging_limit_print('labels_lengths.shape:', labels_lengths.shape)
utils_file.logging_limit_print('labels_lengths:', labels_lengths)
utils_file.logging_limit_print('speech_token_labels.shape:', speech_token_labels.shape)
utils_file.logging_limit_print('speech_tokens_length.shape:', speech_tokens_length.shape)
utils_file.logging_limit_print('speech_tokens_length:', speech_tokens_length)
utils_file.logging_limit_print('观看结束')
labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)
speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask = self.get_speech_token_label_embedding(
speech_token_labels, speech_tokens_length)
# concat
inputs_embeds = torch.cat([prompt_embeds, speech_embeds,
labels_embeds, speech_token_labels_embeds], dim=1)
attention_mask = torch.cat([prompt_mask, speech_masks,
labels_mask, speech_token_labels_mask], dim=1)
target = torch.cat([prompt_target, speech_target,
labels_target, speech_token_labels_target], dim=1)
elif output_type == "text2token":
speech_token_labels = batch['speech_tokens'].to(device)
speech_tokens_length = batch['speech_tokens_length'].to(device)
speech_token_labels_embeds, speech_token_labels_target, speech_token_labels_mask = self.get_speech_token_label_embedding(
speech_token_labels, speech_tokens_length)
inputs_embeds = torch.cat([prompt_embeds, speech_embeds,
speech_token_labels_embeds], dim=1)
attention_mask = torch.cat([prompt_mask, speech_masks,
speech_token_labels_mask], dim=1)
target = torch.cat([prompt_target, speech_target,
speech_token_labels_target], dim=1)
elif output_type == "text":
labels = batch['target'].to(device)
labels_lengths = batch['target_lengths'].to(device)
labels_embeds, labels_target, labels_mask = self.get_label_embedding(labels, labels_lengths)
# concat
inputs_embeds = torch.cat([prompt_embeds, speech_embeds,
labels_embeds], dim=1)
attention_mask = torch.cat([prompt_mask, speech_masks,
labels_mask], dim=1)
target = torch.cat([prompt_target, speech_target,
labels_target], dim=1)
else:
raise NotImplementedError(f'output_type {output_type} not support')
utils_file.logging_limit_print(f'耿雪龙 output_type: {output_type}')
position_ids = attention_mask.long().cumsum(-1) - 1
position_ids.masked_fill_(attention_mask == 0, 1)
outputs = self.llama_model(
inputs_embeds=inputs_embeds,
# labels=target,
attention_mask=attention_mask,
position_ids=position_ids.to(inputs_embeds.device)
)
hidden_states = outputs['hidden_states'][-1]
logits = self.lm_head(hidden_states)
logits2 = self.speaker_head(hidden_states) # speech_head
combined_logits = torch.cat([logits, logits2], dim=-1)
shift_logits = combined_logits[..., :-1, :].contiguous()
shift_target = target[..., 1:].contiguous()
shift_logits = shift_logits.view(-1, combined_logits.shape[-1]) # 注意这里维度的调整,根据logits2的维度相应改变
shift_target = shift_target.view(-1)
shift_target = shift_target.to(shift_logits.device)
loss = self.loss_fct(shift_logits, shift_target)
loss.requires_grad_(True)
return {"loss": loss}
def generate(
self,
wavs,
wavs_len,
prompt,
):
speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
speech_embeds, speech_masks, None)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16 or self.embed_tokens.weight.dtype == torch.bfloat16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
# embeds = embeds.to(torch.float16)
embeds = embeds.to(torch.bfloat16)
atts = atts.to(torch.bfloat16)
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=self.max_length,
num_beams=self.num_beams,
do_sample=self.do_sample,
min_length=self.min_length,
top_p=self.top_p,
top_k=self.top_k,
repetition_penalty=self.repetition_penalty,
length_penalty=self.length_penalty,
temperature=self.temperature,
attention_mask=atts,
eos_token_id=151643,
pad_token_id=-100,
)
# 获取生成的token IDs
# token_ids = outputs[0].tolist() # 假设batch_size=1,取第一个输出
# 将token IDs转换为字符串
# tokens = [self.tokenizer.decode([token_id], skip_special_tokens=True) for token_id in token_ids]
# 打印token列表和字符串列表
# print("Token IDs:", token_ids)
# print("Tokens:", tokens)
# 使用tokenizer将token IDs批量转换为字符串
# output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
# print("Output Text:", output_text)
output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
# 处理token,为英文单词前加上空格
# processed_tokens = []
# for token in tokens:
# # 检查是否为英文单词(简单判断:是否全部由字母组成)
# if token.isalpha() and token[0].isascii():
# processed_tokens.append(" " + token) # 英文单词前加空格
# else:
# processed_tokens.append(token) # 其他token保持不变
# output_text = "".join(processed_tokens)
return output_text
def generate4seech_token(
self,
wavs,
wavs_len,
prompt,
):
speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, 1 + self.speech_token_num,
speech_embeds, speech_masks, None)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
atts = atts.half()
outputs = self.llama_model.generate(
inputs_embeds=embeds,
max_new_tokens=self.max_length,
num_beams=self.num_beams,
do_sample=self.do_sample,
min_length=self.min_length,
top_p=self.top_p,
top_k=self.top_k,
repetition_penalty=self.repetition_penalty,
length_penalty=self.length_penalty,
temperature=self.temperature,
attention_mask=atts,
eos_token_id=151643,
pad_token_id=-100,
)
output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
return output_text
def get_embedding_from_wav(self, wavs, wavs_len):
"""
return:
wav_embedding: (b, l, v)
wav_mask: (b, l), wav为有效值的位置为true
"""
# utils_file.logging_limit_print('get_embedding_from_wav(): wavs.shape:', wavs.shape)
# utils_file.logging_limit_print('get_embedding_from_wav(): wavs_len.shape:', wavs_len.shape)
rank = int(os.environ.get('RANK', 0))
# self.debugger.start()
encoder_out, encoder_mask = self.encoder(wavs, wavs_len)
# self.debugger.stop()
# self.debugger.step()
if rank == 0:
utils_file.logging_limit_print(
f'encoder out shape: {encoder_out.shape},encoder的第一帧的前20个数字:\n{encoder_out[0][0][:20]}')
# utils_file.logging_limit_print(
# 'get_embedding_from_wav(): speech_embeds.shape,by self.encoder(wavs, wavs_len):',
# encoder_out.shape)
speech_embeds, encoder_mask = self.down_sample_2(encoder_out, encoder_mask)
if rank == 0:
utils_file.logging_limit_print(
f'out of down_sample_2 shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n{speech_embeds[0][0][:20]}')
# utils_file.logging_limit_print(
# 'get_embedding_from_wav(): speech_embeds.shape,by self.down_sample_2(speech_embeds):', speech_embeds.shape)
# # max_utt_len = speech_embeds.size(1)
# filled_wavs_len = torch.ones(speech_embeds.size(0)) * max_utt_len
# filled_wavs_len = filled_wavs_len.to(speech_embeds.device)
if self.speech_transformer is not None:
filled_wavs_len = encoder_mask.squeeze(1).sum(-1)
speech_embeds, encoder_mask = self.speech_transformer(speech_embeds, filled_wavs_len)
if rank == 0:
utils_file.logging_limit_print(
f'out of link shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n {speech_embeds[0][0][:20]}')
# utils_file.logging_limit_print(
# 'get_embedding_from_wav(): speech_embeds.shape,by self.speech_transformer(speech_embeds, speech_lens):',
# speech_embeds.shape)
speech_embeds = self.speech_llama_proj(speech_embeds)
if rank == 0:
utils_file.logging_limit_print(
f'out of speech_llama_proj shape: {speech_embeds.shape},encoder的第一帧的前20个数字:\n {speech_embeds[0][0][:20]}')
# utils_file.logging_limit_print(
# 'get_embedding_from_wav(): speech_embeds.shape,by self.speech_llama_proj(speech_embeds):',
# speech_embeds.shape)
return speech_embeds, encoder_mask.squeeze(1)
def get_embedding_from_text(self, text):
text_id = self.tokenizer(
text,
return_tensors="pt",
add_special_tokens=False
).to(
self.embed_tokens.weight.device).input_ids
text_embeds = self.embed_tokens(text_id)
return text_embeds
def get_embeds_from_wav_path(self, wav_path):
wav_i2_path = wav_path
utils_file.logging_limit_print('get_embeds_from_wav_path(): wav_i2_path:', wav_i2_path)
waveform_i2, _ = torchaudio.load(wav_i2_path)
utils_file.logging_limit_print('get_embeds_from_wav_path(): waveform_i2.shape:', waveform_i2.shape)
if len(waveform_i2.shape) != 1:
waveform_i2 = waveform_i2[0]
waveform_i2 = waveform_i2.to(self.embed_tokens.weight.device)
wavs_len_i2 = torch.tensor([len(waveform_i2)], device=self.embed_tokens.weight.device, dtype=torch.int32)
wavs_i2 = waveform_i2.unsqueeze(0)
sample_i2_embeds = self.get_embedding_from_wav(wavs_i2, wavs_len_i2)
utils_file.logging_limit_print('get_embeds_from_wav_path(): sample_i2_embeds.shape:', sample_i2_embeds.shape)
return sample_i2_embeds
def _add_bos_eos(self, bos, eos, inputs_embeds, attention_mask, target=None):
B = len(inputs_embeds)
bos_eos_target = torch.full([B, 1], self.IGNORE_ID).to(inputs_embeds.device) # B,1
bos_eos_mask = torch.full([B, 1], True).to(inputs_embeds.device) # B, 1
if bos is not None:
bos_embed = self.speech_token_emded(torch.full([B, 1],
bos).to(inputs_embeds.device)) # B, 1, D
inputs_embeds = torch.cat((bos_embed, inputs_embeds), 1) # B, (1+T), D
attention_mask = torch.cat((bos_eos_mask, attention_mask), 1) # B, (1+T)
if target is not None:
target = torch.cat((bos_eos_target, target), 1) # B, (1+T), D
if eos is not None:
eos_embed = self.speech_token_emded(torch.full([B, 1],
eos).to(inputs_embeds.device)) # B, 1, D
inputs_embeds = torch.cat((inputs_embeds, eos_embed), 1) # B, (1+T+1), D
attention_mask = torch.cat((attention_mask, bos_eos_mask), 1) # B, (1+T+1)
if target is not None:
target = torch.cat((target, bos_eos_target), 1) # B, (1+T+1), D
return inputs_embeds, attention_mask, target
def infer_for_speech2text_token( # speech2text-token
self,
wavs,
wavs_len,
prompt,
text=None,
):
if text is not None:
prompt = torch.cat((prompt, text), dim=1)
speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, None,
speech_embeds, speech_masks, None)
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
atts = atts.half()
device = wavs.device
max_len = 300
hyps = torch.ones([1, 1], dtype=torch.int64,
device=device).fill_(1 + self.speech_token_num) # (B*N, 1)
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
cache = llm_out.past_key_values
utils_file.logging_limit_print('得到首个cache,开始进行for循环推理')
token_emb = self.speech_token_emded(hyps[:, -1:])
for i in range(max_len):
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1] # 最后一层的
token_logits_1 = self.lm_head(hidden_states)
# utils_file.logging_limit_print(f'token_logits_1.shape:{token_logits_1.shape}')
token_logits_2 = self.speaker_head(hidden_states)
# utils_file.logging_limit_print(f'token_logits_2.shape:{token_logits_2.shape}')
big_logits = torch.cat([token_logits_1, token_logits_2], dim=-1)
# utils_file.logging_limit_print(f'big_logits.shape:{big_logits.shape}')
logp = torch.nn.functional.log_softmax(big_logits[:, -1, :], dim=-1) # 取了最后一个
# utils_file.logging_limit_print(f'logp.shape:{logp.shape}')
max_index = torch.argmax(logp, dim=-1, keepdim=True)
# utils_file.logging_limit_print(f'max_index.shape:{max_index.shape}')
utils_file.logging_limit_print(f'max_index:{max_index}')
hyps = torch.cat((hyps, max_index),
dim=1) # (B*N, i+1)
if max_index < 152064:
token_emb = self.embed_tokens(hyps[:, -1:])
else:
if max_index == 152064 + 4096:
utils_file.logging_limit_print(f'耿雪龙 遇到token结束符号,结束')
break
token_emb = self.speech_token_emded(hyps[:, -1:])
best_hyps = hyps[0, :]
text_res = []
token_res = []
for i in best_hyps[1:]:
if i < 152064:
text_res.append(i)
else:
token_res.append(str((i - 152064).item()))
str_i = self.tokenizer.decode(text_res, skip_special_tokens=True, add_special_tokens=False)
return [str_i + " | " + " ".join(token_res)]
# output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
def infer_for_text2token( # text2token
self,
wavs,
wavs_len,
prompt,
text=None,
):
if text is not None:
prompt = torch.cat((prompt, text), dim=1)
# speech_embeds, speech_masks = self.get_embedding_from_wav(wavs, wavs_len)
# speech_embeds, speech_masks, _ = self._add_bos_eos(0 + self.speech_token_num, None,
# speech_embeds, speech_masks, None)
labels_lengths = torch.tensor([len(text)-1], dtype=torch.int64)
labels = text[:,:-1]
labels_pad_mask = make_pad_mask(labels_lengths) # B, L
labels = labels.masked_fill(labels_pad_mask, 0)
speech_embeds = self.embed_tokens(labels) # B, L, D
speech_target = torch.full(labels_pad_mask.shape, self.IGNORE_ID).to(
speech_embeds.device)
speech_masks = ~labels_pad_mask
prompt = self.tokenizer([prompt], return_tensors="pt"
)['input_ids'].to(speech_embeds.device)
prompt_embeds = self.embed_tokens(prompt)
embeds = torch.cat([prompt_embeds, speech_embeds], dim=1)
atts = torch.ones(embeds.size()[:-1], dtype=torch.long).to(embeds.device)
if self.embed_tokens.weight.dtype == torch.float16:
utils_file.logging_limit_print('generate(): self.embed_tokens.weight.dtype == torch.float16')
embeds = embeds.to(torch.float16)
atts = atts.half()
device = wavs.device
max_len = 300
hyps = torch.ones([1, 1], dtype=torch.int64,
device=device).fill_() # (B*N, 1)
llm_out = self.llama_model(
inputs_embeds=embeds,
past_key_values=None,
output_hidden_states=True
)
cache = llm_out.past_key_values
utils_file.logging_limit_print('得到首个cache,开始进行for循环推理')
token_emb = self.embed_tokens(hyps[:, -1:])
for i in range(max_len):
llm_out = self.llama_model(
inputs_embeds=token_emb,
past_key_values=cache,
output_hidden_states=True
)
cache = llm_out.past_key_values
hidden_states = llm_out.hidden_states[-1] # 最后一层的
token_logits_1 = self.lm_head(hidden_states)
# utils_file.logging_limit_print(f'token_logits_1.shape:{token_logits_1.shape}')
token_logits_2 = self.speaker_head(hidden_states)
# utils_file.logging_limit_print(f'token_logits_2.shape:{token_logits_2.shape}')
big_logits = torch.cat([token_logits_1, token_logits_2], dim=-1)
# utils_file.logging_limit_print(f'big_logits.shape:{big_logits.shape}')
logp = torch.nn.functional.log_softmax(big_logits[:, -1, :], dim=-1) # 取了最后一个
# utils_file.logging_limit_print(f'logp.shape:{logp.shape}')
max_index = torch.argmax(logp, dim=-1, keepdim=True)
# utils_file.logging_limit_print(f'max_index.shape:{max_index.shape}')
utils_file.logging_limit_print(f'max_index:{max_index}')
hyps = torch.cat((hyps, max_index),
dim=1) # (B*N, i+1)
if max_index < 152064:
token_emb = self.embed_tokens(hyps[:, -1:])
else:
if max_index == 152064 + 4096 :
utils_file.logging_limit_print(f'耿雪龙 遇到token结束符号,结束')
break
token_emb = self.speech_token_emded(hyps[:, -1:])
best_hyps = hyps[0, :]
text_res = []
token_res = []
for i in best_hyps[1:]:
if i < 152064:
text_res.append(i)
else:
token_res.append(str((i - 152064).item()))
str_i = self.tokenizer.decode(text_res, skip_special_tokens=True, add_special_tokens=False)
return [str_i + " | " + " ".join(token_res)]
# output_text = self.tokenizer.batch_decode(outputs, add_special_tokens=False, skip_special_tokens=True)
|