Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,258 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 |
from typing import Dict, List, Optional, Tuple, Union
import torch
import torchaudio
from torch import nn
from torch.nn.utils.rnn import pad_sequence
from wenet.transducer.predictor import PredictorBase
from wenet.transducer.search.greedy_search import basic_greedy_search
from wenet.transducer.search.prefix_beam_search import PrefixBeamSearch
from wenet.transformer.asr_model import ASRModel
from wenet.transformer.ctc import CTC
from wenet.transformer.decoder import BiTransformerDecoder, TransformerDecoder
from wenet.transformer.label_smoothing_loss import LabelSmoothingLoss
from wenet.utils.common import (IGNORE_ID, add_blank, add_sos_eos,
reverse_pad_list, TORCH_NPU_AVAILABLE)
class Transducer(ASRModel):
"""Transducer-ctc-attention hybrid Encoder-Predictor-Decoder model"""
def __init__(
self,
vocab_size: int,
blank: int,
encoder: nn.Module,
predictor: PredictorBase,
joint: nn.Module,
attention_decoder: Optional[Union[TransformerDecoder,
BiTransformerDecoder]] = None,
ctc: Optional[CTC] = None,
ctc_weight: float = 0,
ignore_id: int = IGNORE_ID,
reverse_weight: float = 0.0,
lsm_weight: float = 0.0,
length_normalized_loss: bool = False,
transducer_weight: float = 1.0,
attention_weight: float = 0.0,
enable_k2: bool = False,
delay_penalty: float = 0.0,
warmup_steps: float = 25000,
lm_only_scale: float = 0.25,
am_only_scale: float = 0.0,
special_tokens: dict = None,
) -> None:
assert attention_weight + ctc_weight + transducer_weight == 1.0
super().__init__(vocab_size,
encoder,
attention_decoder,
ctc,
ctc_weight,
ignore_id,
reverse_weight,
lsm_weight,
length_normalized_loss,
special_tokens=special_tokens)
self.blank = blank
self.transducer_weight = transducer_weight
self.attention_decoder_weight = 1 - self.transducer_weight - self.ctc_weight
self.predictor = predictor
self.joint = joint
self.bs = None
# k2 rnnt loss
self.enable_k2 = enable_k2
self.delay_penalty = delay_penalty
if delay_penalty != 0.0:
assert self.enable_k2 is True
self.lm_only_scale = lm_only_scale
self.am_only_scale = am_only_scale
self.warmup_steps = warmup_steps
self.simple_am_proj: Optional[nn.Linear] = None
self.simple_lm_proj: Optional[nn.Linear] = None
if self.enable_k2:
self.simple_am_proj = torch.nn.Linear(self.encoder.output_size(),
vocab_size)
self.simple_lm_proj = torch.nn.Linear(self.predictor.output_size(),
vocab_size)
# Note(Mddct): decoder also means predictor in transducer,
# but here decoder is attention decoder
del self.criterion_att
if attention_decoder is not None:
self.criterion_att = LabelSmoothingLoss(
size=vocab_size,
padding_idx=ignore_id,
smoothing=lsm_weight,
normalize_length=length_normalized_loss,
)
@torch.jit.unused
def forward(
self,
batch: dict,
device: torch.device,
) -> Dict[str, Optional[torch.Tensor]]:
"""Frontend + Encoder + predictor + joint + loss
"""
self.device = device
speech = batch['feats'].to(device)
speech_lengths = batch['feats_lengths'].to(device)
text = batch['target'].to(device)
text_lengths = batch['target_lengths'].to(device)
steps = batch.get('steps', 0)
assert text_lengths.dim() == 1, text_lengths.shape
# Check that batch_size is unified
assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] ==
text_lengths.shape[0]), (speech.shape, speech_lengths.shape,
text.shape, text_lengths.shape)
# Encoder
encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
encoder_out_lens = encoder_mask.squeeze(1).sum(1)
# compute_loss
loss_rnnt = self._compute_loss(encoder_out,
encoder_out_lens,
encoder_mask,
text,
text_lengths,
steps=steps)
loss = self.transducer_weight * loss_rnnt
# optional attention decoder
loss_att: Optional[torch.Tensor] = None
if self.attention_decoder_weight != 0.0 and self.decoder is not None:
loss_att, acc_att = self._calc_att_loss(encoder_out, encoder_mask,
text, text_lengths)
else:
acc_att = None
# optional ctc
loss_ctc: Optional[torch.Tensor] = None
if self.ctc_weight != 0.0 and self.ctc is not None:
loss_ctc, _ = self.ctc(encoder_out, encoder_out_lens, text,
text_lengths)
else:
loss_ctc = None
if loss_ctc is not None:
loss = loss + self.ctc_weight * loss_ctc.sum()
if loss_att is not None:
loss = loss + self.attention_decoder_weight * loss_att.sum()
# NOTE: 'loss' must be in dict
return {
'loss': loss,
'loss_att': loss_att,
'loss_ctc': loss_ctc,
'loss_rnnt': loss_rnnt,
'th_accuracy': acc_att,
}
def init_bs(self):
if self.bs is None:
self.bs = PrefixBeamSearch(self.encoder, self.predictor,
self.joint, self.ctc, self.blank)
def _cal_transducer_score(
self,
encoder_out: torch.Tensor,
encoder_mask: torch.Tensor,
hyps_lens: torch.Tensor,
hyps_pad: torch.Tensor,
):
# ignore id -> blank, add blank at head
hyps_pad_blank = add_blank(hyps_pad, self.blank, self.ignore_id)
xs_in_lens = encoder_mask.squeeze(1).sum(1).int()
# 1. Forward predictor
predictor_out = self.predictor(hyps_pad_blank)
# 2. Forward joint
joint_out = self.joint(encoder_out, predictor_out)
rnnt_text = hyps_pad.to(torch.int64)
rnnt_text = torch.where(rnnt_text == self.ignore_id, 0,
rnnt_text).to(torch.int32)
# 3. Compute transducer loss
loss_td = torchaudio.functional.rnnt_loss(joint_out,
rnnt_text,
xs_in_lens,
hyps_lens.int(),
blank=self.blank,
reduction='none')
return loss_td * -1
def _cal_attn_score(
self,
encoder_out: torch.Tensor,
encoder_mask: torch.Tensor,
hyps_pad: torch.Tensor,
hyps_lens: torch.Tensor,
):
# (beam_size, max_hyps_len)
ori_hyps_pad = hyps_pad
# td_score = loss_td * -1
hyps_pad, _ = add_sos_eos(hyps_pad, self.sos, self.eos, self.ignore_id)
hyps_lens = hyps_lens + 1 # Add <sos> at begining
# used for right to left decoder
r_hyps_pad = reverse_pad_list(ori_hyps_pad, hyps_lens, self.ignore_id)
r_hyps_pad, _ = add_sos_eos(r_hyps_pad, self.sos, self.eos,
self.ignore_id)
decoder_out, r_decoder_out, _ = self.decoder(
encoder_out, encoder_mask, hyps_pad, hyps_lens, r_hyps_pad,
self.reverse_weight) # (beam_size, max_hyps_len, vocab_size)
decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)
decoder_out = decoder_out.cpu().numpy()
# r_decoder_out will be 0.0, if reverse_weight is 0.0 or decoder is a
# conventional transformer decoder.
r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
r_decoder_out = r_decoder_out.cpu().numpy()
return decoder_out, r_decoder_out
def beam_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
beam_size: int = 5,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
ctc_weight: float = 0.3,
transducer_weight: float = 0.7,
):
"""beam search
Args:
speech (torch.Tensor): (batch=1, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
ctc_weight (float): ctc probability weight in transducer
prefix beam search.
final_prob = ctc_weight * ctc_prob + transducer_weight * transducer_prob
transducer_weight (float): transducer probability weight in
prefix beam search
Returns:
List[List[int]]: best path result
"""
self.init_bs()
beam, _ = self.bs.prefix_beam_search(
speech,
speech_lengths,
decoding_chunk_size,
beam_size,
num_decoding_left_chunks,
simulate_streaming,
ctc_weight,
transducer_weight,
)
return beam[0].hyp[1:], beam[0].score
def transducer_attention_rescoring(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
beam_size: int,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
reverse_weight: float = 0.0,
ctc_weight: float = 0.0,
attn_weight: float = 0.0,
transducer_weight: float = 0.0,
search_ctc_weight: float = 1.0,
search_transducer_weight: float = 0.0,
beam_search_type: str = 'transducer') -> List[List[int]]:
"""beam search
Args:
speech (torch.Tensor): (batch=1, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
ctc_weight (float): ctc probability weight using in rescoring.
rescore_prob = ctc_weight * ctc_prob +
transducer_weight * (transducer_loss * -1) +
attn_weight * attn_prob
attn_weight (float): attn probability weight using in rescoring.
transducer_weight (float): transducer probability weight using in
rescoring
search_ctc_weight (float): ctc weight using
in rnnt beam search (seeing in self.beam_search)
search_transducer_weight (float): transducer weight using
in rnnt beam search (seeing in self.beam_search)
Returns:
List[List[int]]: best path result
"""
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
if reverse_weight > 0.0:
# decoder should be a bitransformer decoder if reverse_weight > 0.0
assert hasattr(self.decoder, 'right_decoder')
device = speech.device
batch_size = speech.shape[0]
# For attention rescoring we only support batch_size=1
assert batch_size == 1
# encoder_out: (1, maxlen, encoder_dim), len(hyps) = beam_size
self.init_bs()
if beam_search_type == 'transducer':
beam, encoder_out = self.bs.prefix_beam_search(
speech,
speech_lengths,
decoding_chunk_size=decoding_chunk_size,
beam_size=beam_size,
num_decoding_left_chunks=num_decoding_left_chunks,
ctc_weight=search_ctc_weight,
transducer_weight=search_transducer_weight,
)
beam_score = [s.score for s in beam]
hyps = [s.hyp[1:] for s in beam]
elif beam_search_type == 'ctc':
hyps, encoder_out = self._ctc_prefix_beam_search(
speech,
speech_lengths,
beam_size=beam_size,
decoding_chunk_size=decoding_chunk_size,
num_decoding_left_chunks=num_decoding_left_chunks,
simulate_streaming=simulate_streaming)
beam_score = [hyp[1] for hyp in hyps]
hyps = [hyp[0] for hyp in hyps]
assert len(hyps) == beam_size
# build hyps and encoder output
hyps_pad = pad_sequence([
torch.tensor(hyp, device=device, dtype=torch.long) for hyp in hyps
], True, self.ignore_id) # (beam_size, max_hyps_len)
hyps_lens = torch.tensor([len(hyp) for hyp in hyps],
device=device,
dtype=torch.long) # (beam_size,)
encoder_out = encoder_out.repeat(beam_size, 1, 1)
encoder_mask = torch.ones(beam_size,
1,
encoder_out.size(1),
dtype=torch.bool,
device=device)
# 2.1 calculate transducer score
td_score = self._cal_transducer_score(
encoder_out,
encoder_mask,
hyps_lens,
hyps_pad,
)
# 2.2 calculate attention score
decoder_out, r_decoder_out = self._cal_attn_score(
encoder_out,
encoder_mask,
hyps_pad,
hyps_lens,
)
# Only use decoder score for rescoring
best_score = -float('inf')
best_index = 0
for i, hyp in enumerate(hyps):
score = 0.0
for j, w in enumerate(hyp):
score += decoder_out[i][j][w]
score += decoder_out[i][len(hyp)][self.eos]
td_s = td_score[i]
# add right to left decoder score
if reverse_weight > 0:
r_score = 0.0
for j, w in enumerate(hyp):
r_score += r_decoder_out[i][len(hyp) - j - 1][w]
r_score += r_decoder_out[i][len(hyp)][self.eos]
score = score * (1 - reverse_weight) + r_score * reverse_weight
# add ctc score
score = score * attn_weight + \
beam_score[i] * ctc_weight + \
td_s * transducer_weight
if score > best_score:
best_score = score
best_index = i
return hyps[best_index], best_score
def greedy_search(
self,
speech: torch.Tensor,
speech_lengths: torch.Tensor,
decoding_chunk_size: int = -1,
num_decoding_left_chunks: int = -1,
simulate_streaming: bool = False,
n_steps: int = 64,
) -> List[List[int]]:
""" greedy search
Args:
speech (torch.Tensor): (batch=1, max_len, feat_dim)
speech_length (torch.Tensor): (batch, )
beam_size (int): beam size for beam search
decoding_chunk_size (int): decoding chunk for dynamic chunk
trained model.
<0: for decoding, use full chunk.
>0: for decoding, use fixed chunk size as set.
0: used for training, it's prohibited here
simulate_streaming (bool): whether do encoder forward in a
streaming fashion
Returns:
List[List[int]]: best path result
"""
# TODO(Mddct): batch decode
assert speech.size(0) == 1
assert speech.shape[0] == speech_lengths.shape[0]
assert decoding_chunk_size != 0
# TODO(Mddct): forward chunk by chunk
_ = simulate_streaming
# Let's assume B = batch_size
encoder_out, encoder_mask = self.encoder(
speech,
speech_lengths,
decoding_chunk_size,
num_decoding_left_chunks,
)
encoder_out_lens = encoder_mask.squeeze(1).sum()
hyps = basic_greedy_search(self,
encoder_out,
encoder_out_lens,
n_steps=n_steps)
return hyps
@torch.jit.export
def forward_encoder_chunk(
self,
xs: torch.Tensor,
offset: int,
required_cache_size: int,
att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
return self.encoder.forward_chunk(xs, offset, required_cache_size,
att_cache, cnn_cache)
@torch.jit.export
def forward_predictor_step(
self, xs: torch.Tensor, cache: List[torch.Tensor]
) -> Tuple[torch.Tensor, List[torch.Tensor]]:
assert len(cache) == 2
# fake padding
padding = torch.zeros(1, 1)
return self.predictor.forward_step(xs, padding, cache)
@torch.jit.export
def forward_joint_step(self, enc_out: torch.Tensor,
pred_out: torch.Tensor) -> torch.Tensor:
return self.joint(enc_out, pred_out)
@torch.jit.export
def forward_predictor_init_state(self) -> List[torch.Tensor]:
return self.predictor.init_state(1, device=torch.device("cpu"))
def _compute_loss(self,
encoder_out: torch.Tensor,
encoder_out_lens: torch.Tensor,
encoder_mask: torch.Tensor,
text: torch.Tensor,
text_lengths: torch.Tensor,
steps: int = 0) -> torch.Tensor:
ys_in_pad = add_blank(text, self.blank, self.ignore_id)
# predictor
predictor_out = self.predictor(ys_in_pad)
if self.simple_lm_proj is None and self.simple_am_proj is None:
# joint
joint_out = self.joint(encoder_out, predictor_out)
# NOTE(Mddct): some loss implementation require pad valid is zero
# torch.int32 rnnt_loss required
rnnt_text = text.to(torch.int64)
rnnt_text = torch.where(rnnt_text == self.ignore_id, 0,
rnnt_text).to(torch.int32)
rnnt_text_lengths = text_lengths.to(torch.int32)
encoder_out_lens = encoder_out_lens.to(torch.int32)
loss = torchaudio.functional.rnnt_loss(joint_out,
rnnt_text,
encoder_out_lens,
rnnt_text_lengths,
blank=self.blank,
reduction="mean")
else:
try:
import k2
except ImportError:
print('Error: k2 is not installed')
delay_penalty = self.delay_penalty
if steps < 2 * self.warmup_steps:
delay_penalty = 0.00
ys_in_pad = ys_in_pad.type(torch.int64)
boundary = torch.zeros((encoder_out.size(0), 4),
dtype=torch.int64,
device=encoder_out.device)
boundary[:, 3] = encoder_mask.squeeze(1).sum(1)
boundary[:, 2] = text_lengths
rnnt_text = torch.where(text == self.ignore_id, 0, text)
lm = self.simple_lm_proj(predictor_out)
am = self.simple_am_proj(encoder_out)
amp_autocast = torch.cuda.amp.autocast
if "npu" in self.device.__str__() and TORCH_NPU_AVAILABLE:
amp_autocast = torch.npu.amp.autocast
with amp_autocast(enabled=False):
simple_loss, (px_grad, py_grad) = k2.rnnt_loss_smoothed(
lm=lm.float(),
am=am.float(),
symbols=rnnt_text,
termination_symbol=self.blank,
lm_only_scale=self.lm_only_scale,
am_only_scale=self.am_only_scale,
boundary=boundary,
reduction="sum",
return_grad=True,
delay_penalty=delay_penalty,
)
# ranges : [B, T, prune_range]
ranges = k2.get_rnnt_prune_ranges(
px_grad=px_grad,
py_grad=py_grad,
boundary=boundary,
s_range=5,
)
am_pruned, lm_pruned = k2.do_rnnt_pruning(
am=self.joint.enc_ffn(encoder_out),
lm=self.joint.pred_ffn(predictor_out),
ranges=ranges,
)
logits = self.joint(
am_pruned,
lm_pruned,
pre_project=False,
)
with amp_autocast(enabled=False):
pruned_loss = k2.rnnt_loss_pruned(
logits=logits.float(),
symbols=rnnt_text,
ranges=ranges,
termination_symbol=self.blank,
boundary=boundary,
reduction="sum",
delay_penalty=delay_penalty,
)
simple_loss_scale = 0.5
if steps < self.warmup_steps:
simple_loss_scale = (1.0 - (steps / self.warmup_steps) *
(1.0 - simple_loss_scale))
pruned_loss_scale = 1.0
if steps < self.warmup_steps:
pruned_loss_scale = 0.1 + 0.9 * (steps / self.warmup_steps)
loss = (simple_loss_scale * simple_loss +
pruned_loss_scale * pruned_loss)
loss = loss / encoder_out.size(0)
return loss
|