File size: 23,277 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Modified from ESPnet(https://github.com/espnet/espnet)

from typing import Dict, List, Optional, Tuple

import torch
from torch.nn.utils.rnn import pad_sequence

from wenet.transformer.ctc import CTC
from wenet.transformer.decoder import TransformerDecoder
from wenet.transformer.encoder import BaseEncoder
from wenet.transformer.label_smoothing_loss import LabelSmoothingLoss
from wenet.transformer.search import (ctc_greedy_search,
                                      ctc_prefix_beam_search,
                                      attention_beam_search,
                                      attention_rescoring, DecodeResult)
from wenet.utils.mask import make_pad_mask
from wenet.utils.common import (IGNORE_ID, add_sos_eos, th_accuracy,
                                reverse_pad_list)
from wenet.utils.context_graph import ContextGraph


class ASRModel(torch.nn.Module):
    """CTC-attention hybrid Encoder-Decoder model"""

    def __init__(
        self,
        vocab_size: int,
        encoder: BaseEncoder,
        decoder: TransformerDecoder,
        ctc: CTC,
        ctc_weight: float = 0.5,
        ignore_id: int = IGNORE_ID,
        reverse_weight: float = 0.0,
        lsm_weight: float = 0.0,
        length_normalized_loss: bool = False,
        special_tokens: Optional[dict] = None,
        apply_non_blank_embedding: bool = False,
    ):
        assert 0.0 <= ctc_weight <= 1.0, ctc_weight

        super().__init__()
        # note that eos is the same as sos (equivalent ID)
        self.sos = (vocab_size - 1 if special_tokens is None else
                    special_tokens.get("<sos>", vocab_size - 1))
        self.eos = (vocab_size - 1 if special_tokens is None else
                    special_tokens.get("<eos>", vocab_size - 1))
        self.vocab_size = vocab_size
        self.special_tokens = special_tokens
        self.ignore_id = ignore_id
        self.ctc_weight = ctc_weight
        self.reverse_weight = reverse_weight
        self.apply_non_blank_embedding = apply_non_blank_embedding

        self.encoder = encoder
        self.decoder = decoder
        self.ctc = ctc
        self.criterion_att = LabelSmoothingLoss(
            size=vocab_size,
            padding_idx=ignore_id,
            smoothing=lsm_weight,
            normalize_length=length_normalized_loss,
        )
        if ctc_weight == 0:
            """
            防止多次训练后由于该位置梯度堆叠导致的报错
            """
            for p in self.ctc.parameters():
                p.requires_grad = False

    @torch.jit.unused
    def forward(
        self,
        batch: dict,
        device: torch.device,
    ) -> Dict[str, Optional[torch.Tensor]]:
        """Frontend + Encoder + Decoder + Calc loss"""
        speech = batch['feats'].to(device)
        speech_lengths = batch['feats_lengths'].to(device)
        text = batch['target'].to(device)
        text_lengths = batch['target_lengths'].to(device)

        # lang speaker emotion gender -> List<str>
        # duration -> List<float>
        # 如有用到该数据,需要使用对应的str_to_id进行映射
        if 'lang' in batch:
            lang = batch['lang']
        else:
            lang = None
        if 'speaker' in batch:
            speaker = batch['speaker']
        else:
            speaker = None
        if 'emotion' in batch:
            emotion = batch['emotion']
        else:
            emotion = None
        if 'gender' in batch:
            gender = batch['gender']
        else:
            gender = None
        if 'duration' in batch:
            duration = batch['duration']
        else:
            duration = None

        if 'task' in batch:
            task = batch['task']
        else:
            task = None
        # print(lang, speaker, emotion, gender, duration)


        assert text_lengths.dim() == 1, text_lengths.shape
        # Check that batch_size is unified
        assert (speech.shape[0] == speech_lengths.shape[0] == text.shape[0] ==
                text_lengths.shape[0]), (speech.shape, speech_lengths.shape,
                                         text.shape, text_lengths.shape)
        # 1. Encoder
        encoder_out, encoder_mask = self.encoder(speech, speech_lengths)
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)

        # 2a. CTC branch
        if self.ctc_weight != 0.0:
            loss_ctc, ctc_probs = self.ctc(encoder_out, encoder_out_lens, text,
                                           text_lengths)
        else:
            loss_ctc, ctc_probs = None, None

        # 2b. Attention-decoder branch
        # use non blank (token level) embedding for decoder
        if self.apply_non_blank_embedding:
            assert self.ctc_weight != 0
            assert ctc_probs is not None
            encoder_out, encoder_mask = self.filter_blank_embedding(
                ctc_probs, encoder_out)
        if self.ctc_weight != 1.0:
            langs_list = []
            for item in lang:
                if item=='<CN>' or item=="<ENGLISH>":
                    langs_list.append('zh')
                elif item=='<EN>':
                    langs_list.append('en')
                else:
                    print('出现无法识别的语种: {}'.format(item))
                    langs_list.append(item)
            task_list = []
            for item in task:
                if item == "<SOT>":
                    task_list.append('sot_task')
                elif item =="<TRANSCRIBE>":
                    task_list.append("transcribe")
                elif item=="<EMOTION>":
                    task_list.append("emotion_task")
                elif item=="<CAPTION>":
                    task_list.append("caption_task")
                else:
                    print('出现无法识别的任务种类: {}'.format(item), flush=True)
                    task_list.append(item)
            loss_att, acc_att = self._calc_att_loss(
                encoder_out, encoder_mask, text, text_lengths, {
                    "langs": langs_list,
                    "tasks": task_list
                })
        else:
            loss_att = None
            acc_att = None

        if loss_ctc is None:
            loss = loss_att
        elif loss_att is None:
            loss = loss_ctc
        else:
            loss = self.ctc_weight * loss_ctc + (1 -
                                                 self.ctc_weight) * loss_att
        return {
            "loss": loss,
            "loss_att": loss_att,
            "loss_ctc": loss_ctc,
            "th_accuracy": acc_att,
        }

    def tie_or_clone_weights(self, jit_mode: bool = True):
        self.decoder.tie_or_clone_weights(jit_mode)

    @torch.jit.unused
    def _forward_ctc(
            self, encoder_out: torch.Tensor, encoder_mask: torch.Tensor,
            text: torch.Tensor,
            text_lengths: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        encoder_out_lens = encoder_mask.squeeze(1).sum(1)
        loss_ctc, ctc_probs = self.ctc(encoder_out, encoder_out_lens, text,
                                       text_lengths)
        return loss_ctc, ctc_probs

    def filter_blank_embedding(
            self, ctc_probs: torch.Tensor,
            encoder_out: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        batch_size = encoder_out.size(0)
        maxlen = encoder_out.size(1)
        top1_index = torch.argmax(ctc_probs, dim=2)
        indices = []
        for j in range(batch_size):
            indices.append(
                torch.tensor(
                    [i for i in range(maxlen) if top1_index[j][i] != 0]))

        select_encoder_out = [
            torch.index_select(encoder_out[i, :, :], 0,
                               indices[i].to(encoder_out.device))
            for i in range(batch_size)
        ]
        select_encoder_out = pad_sequence(select_encoder_out,
                                          batch_first=True,
                                          padding_value=0).to(
                                              encoder_out.device)
        xs_lens = torch.tensor([len(indices[i]) for i in range(batch_size)
                                ]).to(encoder_out.device)
        T = select_encoder_out.size(1)
        encoder_mask = ~make_pad_mask(xs_lens, T).unsqueeze(1)  # (B, 1, T)
        encoder_out = select_encoder_out
        return encoder_out, encoder_mask

    def _calc_att_loss(
        self,
        encoder_out: torch.Tensor,
        encoder_mask: torch.Tensor,
        ys_pad: torch.Tensor,
        ys_pad_lens: torch.Tensor,
        infos: Dict[str, List[str]] = None,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        ys_in_pad, ys_out_pad = add_sos_eos(ys_pad, self.sos, self.eos,
                                            self.ignore_id)
        ys_in_lens = ys_pad_lens + 1

        # reverse the seq, used for right to left decoder
        r_ys_pad = reverse_pad_list(ys_pad, ys_pad_lens, float(self.ignore_id))
        r_ys_in_pad, r_ys_out_pad = add_sos_eos(r_ys_pad, self.sos, self.eos,
                                                self.ignore_id)
        # 1. Forward decoder
        decoder_out, r_decoder_out, _ = self.decoder(encoder_out, encoder_mask,
                                                     ys_in_pad, ys_in_lens,
                                                     r_ys_in_pad,
                                                     self.reverse_weight)
        # 2. Compute attention loss
        loss_att = self.criterion_att(decoder_out, ys_out_pad)
        r_loss_att = torch.tensor(0.0)
        if self.reverse_weight > 0.0:
            r_loss_att = self.criterion_att(r_decoder_out, r_ys_out_pad)
        loss_att = loss_att * (
            1 - self.reverse_weight) + r_loss_att * self.reverse_weight
        acc_att = th_accuracy(
            decoder_out.view(-1, self.vocab_size),
            ys_out_pad,
            ignore_label=self.ignore_id,
        )
        return loss_att, acc_att

    def _forward_encoder(
        self,
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        simulate_streaming: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        # Let's assume B = batch_size
        # 1. Encoder
        if simulate_streaming and decoding_chunk_size > 0:
            encoder_out, encoder_mask = self.encoder.forward_chunk_by_chunk(
                speech,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks
            )  # (B, maxlen, encoder_dim)
        else:
            encoder_out, encoder_mask = self.encoder(
                speech,
                speech_lengths,
                decoding_chunk_size=decoding_chunk_size,
                num_decoding_left_chunks=num_decoding_left_chunks
            )  # (B, maxlen, encoder_dim)
        return encoder_out, encoder_mask

    @torch.jit.unused
    def ctc_logprobs(self,
                     encoder_out: torch.Tensor,
                     blank_penalty: float = 0.0,
                     blank_id: int = 0):
        if blank_penalty > 0.0:
            logits = self.ctc.ctc_lo(encoder_out)
            logits[:, :, blank_id] -= blank_penalty
            ctc_probs = logits.log_softmax(dim=2)
        else:
            ctc_probs = self.ctc.log_softmax(encoder_out)

        return ctc_probs

    def decode(
        self,
        methods: List[str],
        speech: torch.Tensor,
        speech_lengths: torch.Tensor,
        beam_size: int,
        decoding_chunk_size: int = -1,
        num_decoding_left_chunks: int = -1,
        ctc_weight: float = 0.0,
        simulate_streaming: bool = False,
        reverse_weight: float = 0.0,
        context_graph: ContextGraph = None,
        blank_id: int = 0,
        blank_penalty: float = 0.0,
        length_penalty: float = 0.0,
        infos: Dict[str, List[str]] = None,
    ) -> Dict[str, List[DecodeResult]]:
        """ Decode input speech

        Args:
            methods:(List[str]): list of decoding methods to use, which could
                could contain the following decoding methods, please refer paper:
                https://arxiv.org/pdf/2102.01547.pdf
                   * ctc_greedy_search
                   * ctc_prefix_beam_search
                   * atttention
                   * attention_rescoring
            speech (torch.Tensor): (batch, max_len, feat_dim)
            speech_length (torch.Tensor): (batch, )
            beam_size (int): beam size for beam search
            decoding_chunk_size (int): decoding chunk for dynamic chunk
                trained model.
                <0: for decoding, use full chunk.
                >0: for decoding, use fixed chunk size as set.
                0: used for training, it's prohibited here
            simulate_streaming (bool): whether do encoder forward in a
                streaming fashion
            reverse_weight (float): right to left decoder weight
            ctc_weight (float): ctc score weight

        Returns: dict results of all decoding methods
        """
        assert speech.shape[0] == speech_lengths.shape[0]
        assert decoding_chunk_size != 0
        encoder_out, encoder_mask = self._forward_encoder(
            speech, speech_lengths, decoding_chunk_size,
            num_decoding_left_chunks, simulate_streaming)
        encoder_lens = encoder_mask.squeeze(1).sum(1)
        ctc_probs = self.ctc_logprobs(encoder_out, blank_penalty, blank_id)
        results = {}
        if 'attention' in methods:
            results['attention'] = attention_beam_search(
                self, encoder_out, encoder_mask, beam_size, length_penalty,
                infos)
        if 'ctc_greedy_search' in methods:
            results['ctc_greedy_search'] = ctc_greedy_search(
                ctc_probs, encoder_lens, blank_id)
        if 'ctc_prefix_beam_search' in methods:
            ctc_prefix_result = ctc_prefix_beam_search(ctc_probs, encoder_lens,
                                                       beam_size,
                                                       context_graph, blank_id)
            results['ctc_prefix_beam_search'] = ctc_prefix_result
        if 'attention_rescoring' in methods:
            # attention_rescoring depends on ctc_prefix_beam_search nbest
            if 'ctc_prefix_beam_search' in results:
                ctc_prefix_result = results['ctc_prefix_beam_search']
            else:
                ctc_prefix_result = ctc_prefix_beam_search(
                    ctc_probs, encoder_lens, beam_size, context_graph,
                    blank_id)
            if self.apply_non_blank_embedding:
                encoder_out, _ = self.filter_blank_embedding(
                    ctc_probs, encoder_out)
            results['attention_rescoring'] = attention_rescoring(
                self, ctc_prefix_result, encoder_out, encoder_lens, ctc_weight,
                reverse_weight, infos)
        return results

    @torch.jit.export
    def subsampling_rate(self) -> int:
        """ Export interface for c++ call, return subsampling_rate of the
            model
        """
        return self.encoder.embed.subsampling_rate

    @torch.jit.export
    def right_context(self) -> int:
        """ Export interface for c++ call, return right_context of the model
        """
        return self.encoder.embed.right_context

    @torch.jit.export
    def sos_symbol(self) -> int:
        """ Export interface for c++ call, return sos symbol id of the model
        """
        return self.sos

    @torch.jit.export
    def eos_symbol(self) -> int:
        """ Export interface for c++ call, return eos symbol id of the model
        """
        return self.eos

    @torch.jit.export
    def forward_encoder_chunk(
        self,
        xs: torch.Tensor,
        offset: int,
        required_cache_size: int,
        att_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
        cnn_cache: torch.Tensor = torch.zeros(0, 0, 0, 0),
    ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
        """ Export interface for c++ call, give input chunk xs, and return
            output from time 0 to current chunk.

        Args:
            xs (torch.Tensor): chunk input, with shape (b=1, time, mel-dim),
                where `time == (chunk_size - 1) * subsample_rate + \
                        subsample.right_context + 1`
            offset (int): current offset in encoder output time stamp
            required_cache_size (int): cache size required for next chunk
                compuation
                >=0: actual cache size
                <0: means all history cache is required
            att_cache (torch.Tensor): cache tensor for KEY & VALUE in
                transformer/conformer attention, with shape
                (elayers, head, cache_t1, d_k * 2), where
                `head * d_k == hidden-dim` and
                `cache_t1 == chunk_size * num_decoding_left_chunks`.
            cnn_cache (torch.Tensor): cache tensor for cnn_module in conformer,
                (elayers, b=1, hidden-dim, cache_t2), where
                `cache_t2 == cnn.lorder - 1`

        Returns:
            torch.Tensor: output of current input xs,
                with shape (b=1, chunk_size, hidden-dim).
            torch.Tensor: new attention cache required for next chunk, with
                dynamic shape (elayers, head, ?, d_k * 2)
                depending on required_cache_size.
            torch.Tensor: new conformer cnn cache required for next chunk, with
                same shape as the original cnn_cache.

        """
        return self.encoder.forward_chunk(xs, offset, required_cache_size,
                                          att_cache, cnn_cache)

    @torch.jit.export
    def ctc_activation(self, xs: torch.Tensor) -> torch.Tensor:
        """ Export interface for c++ call, apply linear transform and log
            softmax before ctc
        Args:
            xs (torch.Tensor): encoder output

        Returns:
            torch.Tensor: activation before ctc

        """
        return self.ctc.log_softmax(xs)

    @torch.jit.export
    def is_bidirectional_decoder(self) -> bool:
        """
        Returns:
            torch.Tensor: decoder output
        """
        if hasattr(self.decoder, 'right_decoder'):
            return True
        else:
            return False

    @torch.jit.export
    def forward_attention_decoder(
        self,
        hyps: torch.Tensor,
        hyps_lens: torch.Tensor,
        encoder_out: torch.Tensor,
        reverse_weight: float = 0,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        """ Export interface for c++ call, forward decoder with multiple
            hypothesis from ctc prefix beam search and one encoder output
        Args:
            hyps (torch.Tensor): hyps from ctc prefix beam search, already
                pad sos at the begining
            hyps_lens (torch.Tensor): length of each hyp in hyps
            encoder_out (torch.Tensor): corresponding encoder output
            r_hyps (torch.Tensor): hyps from ctc prefix beam search, already
                pad eos at the begining which is used fo right to left decoder
            reverse_weight: used for verfing whether used right to left decoder,
            > 0 will use.

        Returns:
            torch.Tensor: decoder output
        """
        assert encoder_out.size(0) == 1
        num_hyps = hyps.size(0)
        assert hyps_lens.size(0) == num_hyps
        encoder_out = encoder_out.repeat(num_hyps, 1, 1)
        encoder_mask = torch.ones(num_hyps,
                                  1,
                                  encoder_out.size(1),
                                  dtype=torch.bool,
                                  device=encoder_out.device)

        # input for right to left decoder
        # this hyps_lens has count <sos> token, we need minus it.
        r_hyps_lens = hyps_lens - 1
        # this hyps has included <sos> token, so it should be
        # convert the original hyps.
        r_hyps = hyps[:, 1:]
        #   >>> r_hyps
        #   >>> tensor([[ 1,  2,  3],
        #   >>>         [ 9,  8,  4],
        #   >>>         [ 2, -1, -1]])
        #   >>> r_hyps_lens
        #   >>> tensor([3, 3, 1])

        # NOTE(Mddct): `pad_sequence` is not supported by ONNX, it is used
        #   in `reverse_pad_list` thus we have to refine the below code.
        #   Issue: https://github.com/wenet-e2e/wenet/issues/1113
        # Equal to:
        #   >>> r_hyps = reverse_pad_list(r_hyps, r_hyps_lens, float(self.ignore_id))
        #   >>> r_hyps, _ = add_sos_eos(r_hyps, self.sos, self.eos, self.ignore_id)
        max_len = torch.max(r_hyps_lens)
        index_range = torch.arange(0, max_len, 1).to(encoder_out.device)
        seq_len_expand = r_hyps_lens.unsqueeze(1)
        seq_mask = seq_len_expand > index_range  # (beam, max_len)
        #   >>> seq_mask
        #   >>> tensor([[ True,  True,  True],
        #   >>>         [ True,  True,  True],
        #   >>>         [ True, False, False]])
        index = (seq_len_expand - 1) - index_range  # (beam, max_len)
        #   >>> index
        #   >>> tensor([[ 2,  1,  0],
        #   >>>         [ 2,  1,  0],
        #   >>>         [ 0, -1, -2]])
        index = index * seq_mask
        #   >>> index
        #   >>> tensor([[2, 1, 0],
        #   >>>         [2, 1, 0],
        #   >>>         [0, 0, 0]])
        r_hyps = torch.gather(r_hyps, 1, index)
        #   >>> r_hyps
        #   >>> tensor([[3, 2, 1],
        #   >>>         [4, 8, 9],
        #   >>>         [2, 2, 2]])
        r_hyps = torch.where(seq_mask, r_hyps, self.eos)
        #   >>> r_hyps
        #   >>> tensor([[3, 2, 1],
        #   >>>         [4, 8, 9],
        #   >>>         [2, eos, eos]])
        r_hyps = torch.cat([hyps[:, 0:1], r_hyps], dim=1)
        #   >>> r_hyps
        #   >>> tensor([[sos, 3, 2, 1],
        #   >>>         [sos, 4, 8, 9],
        #   >>>         [sos, 2, eos, eos]])

        decoder_out, r_decoder_out, _ = self.decoder(
            encoder_out, encoder_mask, hyps, hyps_lens, r_hyps,
            reverse_weight)  # (num_hyps, max_hyps_len, vocab_size)
        decoder_out = torch.nn.functional.log_softmax(decoder_out, dim=-1)

        # right to left decoder may be not used during decoding process,
        # which depends on reverse_weight param.
        # r_dccoder_out will be 0.0, if reverse_weight is 0.0
        r_decoder_out = torch.nn.functional.log_softmax(r_decoder_out, dim=-1)
        return decoder_out, r_decoder_out