File size: 4,256 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
# Copyright (c) 2021 Mobvoi Inc (Binbin Zhang, Di Wu)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import List, Tuple

import numpy as np

import torch
import torchaudio.functional as F


def remove_duplicates_and_blank(hyp: List[int],
                                blank_id: int = 0) -> List[int]:
    new_hyp: List[int] = []
    cur = 0
    while cur < len(hyp):
        if hyp[cur] != blank_id:
            new_hyp.append(hyp[cur])
        prev = cur
        while cur < len(hyp) and hyp[cur] == hyp[prev]:
            cur += 1
    return new_hyp


def replace_duplicates_with_blank(hyp: List[int],
                                  blank_id: int = 0) -> List[int]:
    new_hyp: List[int] = []
    cur = 0
    while cur < len(hyp):
        new_hyp.append(hyp[cur])
        prev = cur
        cur += 1
        while cur < len(
                hyp) and hyp[cur] == hyp[prev] and hyp[cur] != blank_id:
            new_hyp.append(blank_id)
            cur += 1
    return new_hyp


def gen_ctc_peak_time(hyp: List[int], blank_id: int = 0) -> List[int]:
    times = []
    cur = 0
    while cur < len(hyp):
        if hyp[cur] != blank_id:
            times.append(cur)
        prev = cur
        while cur < len(hyp) and hyp[cur] == hyp[prev]:
            cur += 1
    return times


def gen_timestamps_from_peak(
    peaks: List[int],
    max_duration: float,
    frame_rate: float = 0.04,
    max_token_duration: float = 1.0,
) -> List[Tuple[float, float]]:
    """
    Args:
        peaks: ctc peaks time stamp
        max_duration: max_duration of the sentence
        frame_rate: frame rate of every time stamp, in seconds
        max_token_duration: max duration of the token, in seconds
    Returns:
        list(start, end) of each token
    """
    times = []
    half_max = max_token_duration / 2
    for i in range(len(peaks)):
        if i == 0:
            start = max(0, peaks[0] * frame_rate - half_max)
        else:
            start = max((peaks[i - 1] + peaks[i]) / 2 * frame_rate,
                        peaks[i] * frame_rate - half_max)

        if i == len(peaks) - 1:
            end = min(max_duration, peaks[-1] * frame_rate + half_max)
        else:
            end = min((peaks[i] + peaks[i + 1]) / 2 * frame_rate,
                      peaks[i] * frame_rate + half_max)
        times.append((start, end))
    return times


def insert_blank(label, blank_id=0):
    """Insert blank token between every two label token."""
    label = np.expand_dims(label, 1)
    blanks = np.zeros((label.shape[0], 1), dtype=np.int64) + blank_id
    label = np.concatenate([blanks, label], axis=1)
    label = label.reshape(-1)
    label = np.append(label, label[0])
    return label


def force_align(ctc_probs: torch.Tensor, y: torch.Tensor, blank_id=0) -> list:
    """ctc forced alignment.

    Args:
        torch.Tensor ctc_probs: hidden state sequence, 2d tensor (T, D)
        torch.Tensor y: id sequence tensor 1d tensor (L)
        int blank_id: blank symbol index
    Returns:
        torch.Tensor: alignment result
    """
    ctc_probs = ctc_probs[None].cpu()
    y = y[None].cpu()
    alignments, _ = F.forced_align(ctc_probs, y, blank=blank_id)
    return alignments[0]


def get_blank_id(configs, symbol_table):
    if 'ctc_conf' not in configs:
        configs['ctc_conf'] = {}

    if '<blank>' in symbol_table:
        if 'ctc_blank_id' in configs['ctc_conf']:
            assert configs['ctc_conf']['ctc_blank_id'] == symbol_table[
                '<blank>']
        else:
            configs['ctc_conf']['ctc_blank_id'] = symbol_table['<blank>']
    else:
        assert 'ctc_blank_id' in configs[
            'ctc_conf'], "PLZ set ctc_blank_id in yaml"

    return configs, configs['ctc_conf']['ctc_blank_id']