Spaces:
Running
on
Zero
Running
on
Zero
File size: 40,341 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 |
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
# 2023 Tsinghua Univ. (authors: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import nullcontext
import copy
from typing import List, Optional
import json
import logging
import os
import torch
import yaml
import torch.optim as optim
import torch.distributed as dist
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
from torch.nn.utils import clip_grad_norm_
from torch.distributed.fsdp import (FullyShardedDataParallel as FSDP,
CPUOffload, MixedPrecision,
sharded_grad_scaler, ShardingStrategy)
try:
import deepspeed
from deepspeed.runtime.zero.stage_1_and_2 import (
estimate_zero2_model_states_mem_needs_all_live)
from deepspeed.runtime.zero.stage3 import (
estimate_zero3_model_states_mem_needs_all_live)
from deepspeed.utils.zero_to_fp32 import (
convert_zero_checkpoint_to_fp32_state_dict)
except ImportError:
pass
from wenet.utils.checkpoint import save_checkpoint
from wenet.utils.common import (StepTimer, get_nested_attribute, lrs_to_str,
tensor_to_scalar)
from wenet.utils.fsdp_utils import (check_gradient_checkpoint, fsdp_save_model,
apply_fsdp_checkpointing,
wenet_fsdp_wrap_policy)
from wenet.utils.scheduler import WarmupLR, NoamHoldAnnealing
from wenet.utils.ctc_utils import get_blank_id
from wenet.utils.common import TORCH_NPU_AVAILABLE
from wenet.utils.init_dataset import init_dataset
def add_model_args(parser):
parser.add_argument('--config', required=True, help='config file')
parser.add_argument('--model_dir', required=True, help='save model dir')
parser.add_argument('--checkpoint', help='checkpoint model')
parser.add_argument('--tensorboard_dir',
default='tensorboard',
help='tensorboard log dir')
parser.add_argument('--override_config',
action='append',
default=[],
help="override yaml config")
parser.add_argument("--enc_init",
default=None,
type=str,
help="Pre-trained model to initialize encoder")
parser.add_argument(
'--enc_init_mods',
default="encoder.",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="List of encoder modules \
to initialize ,separated by a comma")
parser.add_argument(
'--freeze_modules',
default="",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help='free module names',
)
return parser
def add_trace_args(parser):
parser.add_argument('--jit',
action='store_true',
default=False,
help='if use jit to trace model while training stage')
parser.add_argument('--print_model',
action='store_true',
default=False,
help='print model')
return parser
def add_dataset_args(parser):
parser.add_argument('--data_type',
default='raw',
# choices=['raw', 'shard'],
help='train and cv data type')
parser.add_argument('--train_data', required=True, help='train data file')
parser.add_argument('--cv_data', required=True, help='cv data file')
parser.add_argument('--num_workers',
default=0,
type=int,
help='num of subprocess workers for reading')
parser.add_argument('--pin_memory',
action='store_true',
default=False,
help='Use pinned memory buffers used for reading')
parser.add_argument('--prefetch',
default=100,
type=int,
help='prefetch number')
return parser
def add_lora_args(parser):
'''Configure parameters for LoRA fine-tuning. Set use_lora and
only_optimize_lora to true to enable LoRA functionality.
LoRA will be injected to model through (lora_modules, lora_attn_attr,
lora_list).
LoRA weights will be merged after calling model.eval()
(or model.train(mode=False)).
LoRA weights need to be loaded after fine-tuning with DeepSpeed.
'''
parser.add_argument("--use_lora",
default=False,
type=bool,
help="whether use the lora finetune.")
parser.add_argument("--only_optimize_lora",
default=False,
type=bool,
help="freeze all other paramters and only optimize \
LoRA-related prameters.")
parser.add_argument(
'--lora_modules',
default="encoder.encoders",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help='modules names needs inject lora',
)
parser.add_argument(
"--lora_attn_attr",
default="self_attn,src_attn",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="lora_attn_attr.")
parser.add_argument(
"--lora_list",
default="linear_out,linear_q,linear_k,linear_v",
type=lambda s: [str(mod) for mod in s.split(",") if s != ""],
help="lora module list.")
parser.add_argument("--lora_rank",
default=8,
type=int,
help="lora rank num.")
parser.add_argument("--lora_alpha",
default=8,
type=int,
help="lora scale param, scale=lora_alpha/lora_rank.")
parser.add_argument("--lora_dropout",
default=0,
type=float,
help="lora dropout param.")
parser.add_argument("--lora_ckpt_path",
default=None,
type=str,
help="lora checkpoint path.")
parser.add_argument("--lora_reinit",
default=False,
type=bool,
help="whether use the lora init, default is zero init.")
parser.add_argument('--lora_init_yaml',
default="wenet/finetune/lora/config.yaml",
type=str,
help='Path to the configuration YAML file')
return parser
def add_ddp_args(parser):
parser.add_argument('--ddp.dist_backend',
dest='dist_backend',
default='nccl',
choices=['nccl', 'gloo', "hccl"],
help='distributed backend')
parser.add_argument('--use_amp',
action='store_true',
default=False,
help='Use automatic mixed precision training')
parser.add_argument('--fp16_grad_sync',
action='store_true',
default=False,
help='Use fp16 gradient sync for ddp')
return parser
def add_deepspeed_args(parser):
parser.add_argument('--timeout',
default=30,
type=int,
help='timeout (in seconds) of wenet_join. ' +
'30s for aishell & 300s for wenetspeech')
parser.add_argument('--local_rank',
type=int,
default=-1,
help='local rank passed from distributed launcher')
parser.add_argument('--deepspeed.save_states',
dest='save_states',
default='model_only',
choices=['model_only', 'model+optimizer'],
help='save model/optimizer states')
# DeepSpeed automaticly add '--deepspeed' and '--deepspeed_config' to parser
try:
parser = deepspeed.add_config_arguments(parser)
except Exception as e:
print(e)
return parser
def add_fsdp_args(parser):
parser.add_argument(
'--dtype',
default='fp32',
choices=['fp32', 'fp16', 'bf16'],
help='when amp is used, dtype is automatically set to fp16.\
this arg has no effect when deepspeed is enabled.')
parser.add_argument(
'--fsdp_cpu_offload',
default=False,
type=bool,
help='whether to offload parameters to CPU',
)
parser.add_argument(
'--fsdp_sync_module_states',
type=bool,
default=True,
help='\
each FSDP module will broadcast module parameters and buffers from \
rank 0 to ensure that they are replicated across ranks',
)
parser.add_argument(
'--fsdp_sharding_strategy',
default='zero2',
# TODO(Mddct): pipeline and model parallel (3-D parallelism)
choices=['no_shard', 'model', 'zero2', 'zero3'],
help='Sharding strategy for FSDP. Choose from the following options:\n'
' - "no_shard": Equivalent to DistributedDataParallel (DDP).\n'
' - "model": WENET_ENC_DEC strategy, equivalent to DeepSpeed zero1.\n'
' - "zero2": SHARD_GRAD_OP strategy, equivalent to DeepSpeed zero2.\n'
' - "zero3": FULL_SHARD strategy, equivalent to DeepSpeed zero3.\n'
'For more information, refer to the FSDP API documentation.')
return parser
def init_distributed(args):
world_size = int(os.environ.get('WORLD_SIZE', 1))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
rank = int(os.environ.get('RANK', 0))
logging.info('training on multiple gpus, this gpu {}'.format(local_rank) +
', rank {}, world_size {}'.format(rank, world_size))
if args.train_engine in ["torch_ddp", "torch_fsdp"]:
if "cuda" in args.device:
torch.cuda.set_device(local_rank)
elif "npu" in args.device and TORCH_NPU_AVAILABLE:
torch.npu.set_device(local_rank)
else:
logging.error("not supported device: {}".format(args.device))
dist.init_process_group(args.dist_backend)
elif args.train_engine == "deepspeed":
deepspeed.init_distributed(dist_backend=args.dist_backend)
else:
logging.error("not supported engine: {}".format(args.train_engine))
return world_size, local_rank, rank
def check_modify_and_save_config(args, configs, symbol_table):
if args.train_engine in ["torch_ddp", "torch_fsdp"]:
if args.use_amp:
configs["dtype"] = "fp16"
args.dtype = 'fp16'
else:
configs["dtype"] = args.dtype
elif args.train_engine == "deepspeed":
# NOTE(xcsong): DeepSpeed does not support uneven data. When using custom
# dataset, we need to manually ensure that the data is evenly distributed
# across all processe. we impl `train_utils.py::wenet_join` for this func
# ref: https://github.com/microsoft/DeepSpeed/issues/2223
#
# NOTE(xsong): We also need to keep:
# 1. `train_micro_batch_size_per_gpu == 1`
# 2. `accum_grad (in train_confomrer.yaml)
# == gradient_accumulation_steps (in ds_config.json)`
# 3. `grad_clip (in train_confomrer.yaml)
# == gradient_clipping (in ds_config.json)`
# The reason for such consistence checking lies in that deepspeed's native
# dataloader uses PyTorch's torch.utils.data.DistributedSampler which does
# not support IterableDataset, IterableDataset is extremly useful in large
# scale training because it lets you stream the data without having to
# download the complete dataset.
# ref: https://github.com/microsoft/DeepSpeed/issues/1371
# https://github.com/microsoft/DeepSpeed/issues/285
# To make deepspeed training compatible with IterableDataset, we have to
# use custom dataloader instead of deepspeed's native loader and thus we
# should configure batchsize in train_confomrer.yaml instead of
# ds_config.json. On the contrary, gradient accumulation / clipping should be
# configured in ds_config.json since they will be handled by ds automatically.
# ref: https://github.com/microsoft/DeepSpeed/issues/62
with open(args.deepspeed_config, 'r') as fin:
ds_configs = json.load(fin)
if "fp16" in ds_configs and ds_configs["fp16"]["enabled"]:
configs["dtype"] = "fp16"
elif "bf16" in ds_configs and ds_configs["bf16"]["enabled"]:
configs["dtype"] = "bf16"
else:
configs["dtype"] = "fp32"
assert ds_configs["train_micro_batch_size_per_gpu"] == 1
assert ds_configs["gradient_accumulation_steps"] == configs[
'accum_grad']
assert ds_configs["gradient_clipping"] == configs['grad_clip']
assert ds_configs["steps_per_print"] == configs['log_interval']
if args.use_lora:
configs['lora_conf'] = {}
configs['lora_conf']['lora_modules'] = args.lora_modules
configs['lora_conf']['lora_attn_attr'] = args.lora_attn_attr
configs['lora_conf']['lora_list'] = args.lora_list
configs['lora_conf']['lora_rank'] = args.lora_rank
configs['lora_conf']['lora_alpha'] = args.lora_alpha
configs['lora_conf']['lora_dropout'] = args.lora_dropout
if configs["model"] == 'asr_model':
if 'input_dim' not in configs:
if 'fbank_conf' in configs['dataset_conf']:
input_dim = configs['dataset_conf']['fbank_conf'][
'num_mel_bins']
elif 'log_mel_spectrogram_conf' in configs['dataset_conf']:
input_dim = configs['dataset_conf'][
'log_mel_spectrogram_conf']['num_mel_bins']
else:
input_dim = configs['dataset_conf']['mfcc_conf'][
'num_mel_bins']
else:
input_dim = configs['input_dim']
configs['input_dim'] = input_dim
configs, _ = get_blank_id(configs, symbol_table)
configs['output_dim'] = configs['vocab_size']
configs['train_engine'] = args.train_engine
configs['use_amp'] = args.use_amp
configs['model_dir'] = args.model_dir
configs['save_states'] = args.save_states
# Save configs to model_dir/train.yaml for inference and export
if int(os.environ.get('RANK', 0)) == 0:
saved_config_path = os.path.join(args.model_dir, 'train.yaml')
with open(saved_config_path, 'w') as fout:
data = yaml.dump(configs)
fout.write(data)
if configs["model_conf"].get("apply_non_blank_embedding", False):
logging.warn('Had better load a well trained model'
'if apply_non_blank_embedding is true !!!')
return configs
def init_dataset_and_dataloader(args, configs, tokenizer, seed=777):
generator = torch.Generator()
generator.manual_seed(seed)
# if save_interval in configs, steps mode else epoch mode
if "save_interval" in configs:
configs['dataset_conf']['cycle'] = configs.get('max_epoch', 100)
conf = configs['dataset_conf']
dataset_type = configs.get('dataset', 'asr')
configs['vocab_size'] = tokenizer.vocab_size()
train_dataset = init_dataset(dataset_type,
args.data_type,
args.train_data,
tokenizer,
conf,
True,
split='train')
tag = configs["init_infos"].get("tag", "init")
train_dataset.set_epoch(configs["init_infos"].get('epoch', 0) + int("epoch_" in tag) - 1)
cv_conf = copy.deepcopy(conf)
cv_conf['split_num'] = 1
cv_dataset = init_dataset(dataset_type,
args.data_type,
args.cv_data,
tokenizer,
cv_conf,
partition=False,
split='cv')
# NOTE(xcsong): Why we prefer persistent_workers=True ?
# https://discuss.pytorch.org/t/what-are-the-dis-advantages-of-persistent-workers/102110
train_data_loader = DataLoader(train_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
persistent_workers=True,
generator=generator,
prefetch_factor=args.prefetch)
cv_data_loader = DataLoader(cv_dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
persistent_workers=True,
generator=generator,
prefetch_factor=args.prefetch)
return train_dataset, cv_dataset, train_data_loader, cv_data_loader
def wrap_cuda_model(args, model, configs=None):
local_world_size = int(os.environ.get('LOCAL_WORLD_SIZE', 1))
world_size = int(os.environ.get('WORLD_SIZE', 1))
if hasattr(model, 'encoder'):
grad_ckpt = getattr(model.encoder, 'gradient_checkpointing', False)
else:
grad_ckpt = False
if args.train_engine == "torch_ddp": # native pytorch ddp
device = torch.device(args.device)
model.to(device)
# model = torch.nn.parallel.DistributedDataParallel(
# model, find_unused_parameters=not grad_ckpt)
model = torch.nn.parallel.DistributedDataParallel(
model, find_unused_parameters=True)
elif args.train_engine == "deepspeed": # deepspeed
# NOTE(xcsong): look in detail how the memory estimator API works:
# https://deepspeed.readthedocs.io/en/latest/memory.html#discussion
if int(os.environ.get('RANK', 0)) == 0:
logging.info("Estimating model states memory needs (zero2)...")
estimate_zero2_model_states_mem_needs_all_live(
model,
num_gpus_per_node=local_world_size,
num_nodes=world_size // local_world_size)
logging.info("Estimating model states memory needs (zero3)...")
estimate_zero3_model_states_mem_needs_all_live(
model,
num_gpus_per_node=local_world_size,
num_nodes=world_size // local_world_size)
device = torch.device(args.device) # Init device later
pass # Init DeepSpeed later
elif args.train_engine == 'torch_fsdp':
assert configs is not None
mixed_precision_dtype = {
'fp32': torch.float32,
"fp16": torch.float16,
"bf16": torch.bfloat16,
}[configs['dtype']]
sharding_strategy = {
'model': ShardingStrategy.SHARD_GRAD_OP,
'zero2': ShardingStrategy.SHARD_GRAD_OP,
'zero3': ShardingStrategy.FULL_SHARD,
'no_shard': ShardingStrategy.NO_SHARD,
}[args.fsdp_sharding_strategy]
wrap_policy = wenet_fsdp_wrap_policy(mode=args.fsdp_sharding_strategy)
layer_types = check_gradient_checkpoint(model)
if "cuda" in args.device:
device_id = torch.cuda.current_device()
elif "npu" in args.device and TORCH_NPU_AVAILABLE:
device_id = torch.npu.current_device()
else:
logging.error("not supported device: {}".format(args.device))
model = FSDP(
model,
auto_wrap_policy=wrap_policy,
cpu_offload=CPUOffload(offload_params=True)
if args.fsdp_cpu_offload is True else None,
mixed_precision=MixedPrecision(
param_dtype=mixed_precision_dtype,
reduce_dtype=mixed_precision_dtype,
buffer_dtype=mixed_precision_dtype,
),
sharding_strategy=sharding_strategy,
limit_all_gathers=True,
use_orig_params=True,
sync_module_states=args.fsdp_sync_module_states,
# init_distributed is called (torch.cuda.set_device),
# we should set device_id, see FSDP api
device_id=device_id)
apply_fsdp_checkpointing(model, layer_types)
device = torch.device(args.device)
else:
logging.error("not supported engine: {}".format(args.train_engine))
if args.train_engine in ["torch_fsdp", "torch_ddp"]:
if args.fp16_grad_sync:
from torch.distributed.algorithms.ddp_comm_hooks import (
default as comm_hooks, )
model.register_comm_hook(state=None,
hook=comm_hooks.fp16_compress_hook)
return model, device
def init_optimizer_and_scheduler(args, configs, model):
groups = []
lr = configs['optim_conf'].get('lr')
if isinstance(lr, List):
assert configs['scheduler'] == 'warmuplr'
modules_m = configs['optim_conf']['modules']
assert isinstance(modules_m, List)
assert len(modules_m) + 1 == len(lr)
special_param_ids = set()
rest_params = []
for (i, m_str) in enumerate(modules_m):
sub_module = get_nested_attribute(model, m_str)
subs_params = []
for _, sub_params in sub_module.named_parameters():
subs_params.append(sub_params)
special_param_ids.add(id(sub_params))
groups.append({'params': subs_params, 'lr': lr[i]})
# other model's parameters
for _, param in model.named_parameters():
if id(param) not in special_param_ids:
rest_params.append(param)
groups.append({'params': rest_params, 'lr': lr[-1]})
params = groups if len(groups) > 0 else model.parameters()
optim_conf = copy.deepcopy(configs['optim_conf'])
if 'modules' in optim_conf:
del optim_conf['modules']
if isinstance(lr, List):
optim_conf['lr'] = lr[-1]
if configs['optim'] == 'adam':
optimizer = optim.Adam(params, **optim_conf)
elif configs['optim'] == 'adamw':
optimizer = optim.AdamW(params, **optim_conf)
else:
raise ValueError("unknown optimizer: " + configs['optim'])
scheduler_type = None
if configs['scheduler'] == 'warmuplr':
scheduler_type = WarmupLR
scheduler = WarmupLR(optimizer, **configs['scheduler_conf'])
elif configs['scheduler'] == 'NoamHoldAnnealing':
scheduler_type = NoamHoldAnnealing
scheduler = NoamHoldAnnealing(optimizer, **configs['scheduler_conf'])
else:
raise ValueError("unknown scheduler: " + configs['scheduler'])
# NOTE(xcsong): Custom optimizer might yield poor performance when
# zero-offload is enabled, if you do want to offload optimizer to CPU,
# please set optimizer in ds_config.json, see:
# (https://www.deepspeed.ai/docs/config-json/#optimizer-parameters)
if args.train_engine == "deepspeed":
with open(args.deepspeed_config, 'r') as fin:
ds_configs = json.load(fin)
if "optimizer" in ds_configs:
# NOTE(xcsong): Disable custom optimizer if it is set in ds_config,
# extremely useful when enable cpu_offload, DeepspeedCpuAdam
# could be 4~5x faster than torch native adam
optimizer = None
if "scheduler" in ds_configs:
scheduler = None
else:
def scheduler(opt):
return scheduler_type(opt, **configs['scheduler_conf'])
model, optimizer, _, scheduler = deepspeed.initialize(
args=args,
model=model,
optimizer=optimizer,
lr_scheduler=scheduler,
model_parameters=model.parameters())
step = configs.get("init_infos", {}).get("step", -1)
scheduler.set_step(step)
return model, optimizer, scheduler
def trace_and_print_model(args, model):
# !!!IMPORTANT!!!
# Try to export the model by script, if fails, we should refine
# the code to satisfy the script export requirements
if int(os.environ.get('RANK', 0)) == 0:
if args.jit:
script_model = torch.jit.script(model)
script_model.save(os.path.join(args.model_dir, 'init.zip'))
if args.print_model:
print(model)
num_params = sum(p.numel() for p in model.parameters())
print('the number of model params: {:,d}'.format(num_params))
def init_summarywriter(args):
writer = None
if int(os.environ.get('RANK', 0)) == 0:
os.makedirs(args.model_dir, exist_ok=True)
exp_id = os.path.basename(args.model_dir)
writer = SummaryWriter(os.path.join(args.tensorboard_dir, exp_id))
return writer
def init_scaler(args):
scaler = None
if args.use_amp:
if "cuda" in args.device:
scaler = torch.cuda.amp.GradScaler()
elif "npu" in args.device and TORCH_NPU_AVAILABLE:
scaler = torch.npu.amp.GradScaler()
else:
logging.error("not supported device: {}".format(args.device))
elif args.train_engine == 'torch_fsdp':
# why bf16 don't need scaler:
# https://discuss.pytorch.org/t/why-bf16-do-not-need-loss-scaling/176596
if args.dtype in ['fp16']:
scaler = sharded_grad_scaler.ShardedGradScaler(enabled=True)
return scaler
def save_model(model, info_dict):
rank = int(os.environ.get('RANK', 0))
tag = info_dict["tag"]
model_dir = info_dict["model_dir"]
save_model_path = os.path.join(model_dir, '{}.pt'.format(tag))
# save ckpt
if info_dict["train_engine"] == "deepspeed":
# NOTE(xcsong): All ranks should call this API, but only rank 0
# save the general model params. see:
# https://github.com/microsoft/DeepSpeed/issues/2993
with torch.no_grad():
model.save_checkpoint(save_dir=model_dir,
tag=tag,
client_state=info_dict)
if info_dict["save_states"] == "model_only" and rank == 0:
convert_zero_checkpoint_to_fp32_state_dict(model_dir,
save_model_path,
tag=tag)
os.system("rm -rf {}/{}".format(model_dir, tag))
elif info_dict['train_engine'] == "torch_fsdp":
fsdp_save_model(model, save_model_path, info_dict)
elif rank == 0:
# NOTE(xcsong): For torch_ddp, only rank-0 should call this.
save_checkpoint(model, save_model_path, info_dict)
# save yaml
if rank == 0:
with open("{}/{}.yaml".format(model_dir, tag), 'w') as fout:
data = yaml.dump(info_dict)
fout.write(data)
def wenet_join(group_join, info_dict):
world_size = int(os.environ.get('WORLD_SIZE', 1))
local_rank = int(os.environ.get('LOCAL_RANK', 0))
rank = int(os.environ.get('RANK', 0))
train_engine = info_dict.get('train_engine', "torch_ddp")
if info_dict["batch_idx"] == 0 or train_engine == "torch_ddp":
# NOTE(xcsong): skip first batch because its processing time includes
# dataloader initialization time, which may exceed 30 seconds
return False
try:
# NOTE(xcsong): Why we need a new group?
# Because Deepspeed has its own group where all the relevant communication
# operations are executed. If we add a communication operation that is not
# managed by Deepspeed in this group, it's highly likely to cause
# communication chaos, resulting in hard-to-troubleshoot hangs.
dist.monitored_barrier(group=group_join,
timeout=group_join.options._timeout)
except RuntimeError as e:
logging.info("Detected uneven workload distribution: {}\n".format(e) +
"Break current worker to manually join all workers, " +
"world_size {}, current rank {}, current local_rank {}\n".
format(world_size, rank, local_rank))
return True
return False
def batch_forward(model, batch, scaler, info_dict, device):
train_engine = info_dict.get('train_engine', "torch_ddp")
accum_grad = info_dict.get('accum_grad', 1)
dtype = info_dict.get("dtype", "fp32")
if dtype == "fp16":
dtype = torch.float16
elif dtype == "bf16":
dtype = torch.bfloat16
else: # fp32
dtype = None
# autocast context
# The more details about amp can be found in
# https://pytorch.org/docs/stable/notes/amp_examples.html
amp_autocast = torch.cuda.amp.autocast
if "npu" in device.__str__() and TORCH_NPU_AVAILABLE:
amp_autocast = torch.npu.amp.autocast
autocast = {
"deepspeed":
amp_autocast(enabled=dtype is not None,
dtype=dtype,
cache_enabled=False),
"torch_ddp":
amp_autocast(enabled=scaler is not None),
"torch_fsdp":
amp_autocast(enabled=True, dtype=dtype)
if dtype is not None else nullcontext()
}[train_engine]
with autocast:
loss_dict = model(batch, device)
info_dict['loss_dict'] = loss_dict
return info_dict
def batch_backward(model, scaler, info_dict):
train_engine = info_dict.get("train_engine", "torch_ddp")
accum_grad = info_dict.get('accum_grad', 1)
use_amp = info_dict.get('use_amp', False)
if use_amp:
assert scaler is not None
loss = info_dict['loss_dict']['loss']
if train_engine == "deepspeed":
# NOTE(xcsong): `model.backward(loss)` is equivalent to
# `scale_loss_wrt_accum_grad + loss.backward()`
# ref: https://www.deepspeed.ai/tutorials/megatron/#using-the-training-api
scaled_loss = model.backward(loss)
else:
assert train_engine in ["torch_ddp", "torch_fsdp"]
scaled_loss = loss / accum_grad
if scaler is not None:
# fp16 (amp and fsdp)
scaler.scale(scaled_loss).backward()
else:
# float32 (ddp and fsdp)
# bf16 (fsdp)
scaled_loss.backward()
info_dict['loss_dict']['loss'] = scaled_loss
for loss_name, loss_value in info_dict['loss_dict'].items():
if loss_value is not None:
info_dict['loss_dict'][loss_name] = tensor_to_scalar(loss_value)
return info_dict
def update_parameter_and_lr(model, optimizer, scheduler, scaler, info_dict):
rank = int(os.environ.get('RANK', 0))
train_engine = info_dict.get("train_engine", "torch_ddp")
accum_grad = info_dict.get('accum_grad', 1)
use_amp = info_dict.get('use_amp', False)
clip = info_dict.get('grad_clip', 50.0)
batch_idx = info_dict["batch_idx"]
if use_amp:
assert scaler is not None
grad_norm = 0.0
if train_engine == "deepspeed":
# NOTE(xcsong): The step() function in DeepSpeed engine updates the
# model parameters as well as the learning rate.
# Zeroing the gradients is handled automatically by
# DeepSpeed after the weights have been updated using a mini-batch.
# DeepSpeed also performs gradient averaging automatically at the
# gradient accumulation boundaries and addresses clip_grad_norm internally.
# `ds_model.step() = clip_grad_norm_() + optimizer.step()
# + optimizer.zero_grad() + scheduler.step()`
# ref: https://www.deepspeed.ai/tutorials/megatron/#using-the-training-api
info_dict["is_gradient_accumulation_boundary"] = \
model.is_gradient_accumulation_boundary()
model.step()
grad_norm = model.get_global_grad_norm()
if grad_norm is None:
grad_norm = 0.0
elif (batch_idx + 1) % accum_grad == 0:
# Use mixed precision training
# fp16 (ddp fsdp)
if scaler is not None:
scaler.unscale_(optimizer)
if train_engine == "torch_ddp":
grad_norm = clip_grad_norm_(model.parameters(), clip)
else:
# fsdp
grad_norm = model.clip_grad_norm_(clip)
# Must invoke scaler.update() if unscale_() is used in
# the iteration to avoid the following error:
# RuntimeError: unscale_() has already been called
# on this optimizer since the last update().
# We don't check grad here since that if the gradient
# has inf/nan values, scaler.step will skip
# optimizer.step().
scaler.step(optimizer)
scaler.update()
else:
if train_engine == "torch_ddp":
grad_norm = clip_grad_norm_(model.parameters(), clip)
else:
grad_norm = model.clip_grad_norm_(clip)
if torch.isfinite(grad_norm):
optimizer.step()
optimizer.zero_grad()
scheduler.step()
info_dict["lrs"] = [group['lr'] for group in optimizer.param_groups]
info_dict["grad_norm"] = tensor_to_scalar(grad_norm)
return info_dict
def log_per_step(writer, info_dict, timer: Optional[StepTimer] = None):
tag = info_dict["tag"]
step = info_dict["step"]
batch_idx = info_dict["batch_idx"]
loss_dict = info_dict['loss_dict']
epoch = info_dict.get('epoch', 0)
train_engine = info_dict.get("train_engine", "torch_ddp")
accum_grad = info_dict.get('accum_grad', 1) if tag != "CV" else 1
log_interval = info_dict.get('log_interval', 10)
lrs = info_dict.get("lrs", [0.0])
is_gradient_accumulation_boundary = info_dict.get(
"is_gradient_accumulation_boundary", False)
rank = int(os.environ.get('RANK', 0))
# TRAIN Tensorboard
if tag == "TRAIN" and rank == 0 and writer is not None:
if (train_engine == "deepspeed" and is_gradient_accumulation_boundary
) or (train_engine in ["torch_ddp", "torch_fsdp"] and
(batch_idx + 1) % accum_grad == 0):
writer.add_scalar('train/train_loss',
tensor_to_scalar(loss_dict['loss']) * accum_grad,
step)
writer.add_scalar('train/grad_norm', info_dict['grad_norm'], step)
for name, value in loss_dict.items():
if name != 'loss' and value is not None:
writer.add_scalar('train/{}'.format(name),
tensor_to_scalar(value), step)
# lr
for i, lr in enumerate(lrs):
writer.add_scalar('train/lr_{}'.format(i), lr, step)
# CV Tensorboard
elif "step_" in tag and rank == 0 and writer is not None:
for name, value in loss_dict.items():
writer.add_scalar('cv/{}'.format(name), tensor_to_scalar(value),
step)
logging.info(
'Epoch {} Step {} CV info lr {} cv_loss {} rank {} acc {}'.format(
epoch, step + 1, lrs_to_str(lrs),
tensor_to_scalar(loss_dict["loss"]), rank,
tensor_to_scalar(loss_dict["acc"])))
return
# TRAIN & CV, Shell log (stdout)
if (batch_idx + 1) % log_interval == 0:
log_str = '{} | '.format(tag)
if timer is not None:
timer_step = step
if info_dict.get("cv_step", None) is not None:
timer_step = info_dict['cv_step']
steps_per_second = timer.steps_per_second(timer_step)
log_str += 'steps/sec {:.3f}| '.format(steps_per_second)
log_str += 'Batch {}/{} loss {:.6f} '.format(
epoch, batch_idx + 1 if 'save_interval' not in info_dict else
(step + 1) * accum_grad,
tensor_to_scalar(loss_dict['loss']) * accum_grad)
for name, value in loss_dict.items():
if name != 'loss' and value is not None:
log_str += '{} {:.6f} '.format(name, tensor_to_scalar(value))
if tag == "TRAIN":
log_str += 'lr {} grad_norm {:.6f} rank {}'.format(
lrs_to_str(lrs), info_dict['grad_norm'], rank)
logging.debug(log_str)
def log_per_epoch(writer, info_dict):
epoch = info_dict["epoch"]
loss_dict = info_dict["loss_dict"]
lrs = info_dict['lrs']
rank = int(os.environ.get('RANK', 0))
step = info_dict["step"]
logging.info(
'Epoch {} Step {} CV info lr {} cv_loss {} rank {} acc {}'.format(
epoch, step, lrs_to_str(lrs), tensor_to_scalar(loss_dict["loss"]),
rank, tensor_to_scalar(loss_dict["acc"])))
if int(os.environ.get('RANK', 0)) == 0:
for i, lr in enumerate(info_dict["lrs"]):
writer.add_scalar('epoch/lr_{}'.format(i), lr, epoch)
for name, value in loss_dict.items():
writer.add_scalar('epoch/{}'.format(name), tensor_to_scalar(value),
epoch)
def freeze_modules(model, args):
for name, param in model.named_parameters():
for module_name in args.freeze_modules:
if module_name in name:
param.requires_grad = False
logging.debug("{} module is freezed".format(name))
def reinit_lora(model, args, configs, tokenizer, seed=777):
from tqdm import tqdm
from wenet.finetune.lora.utils import estimate_gradient, reinit_lora_modules
from wenet.finetune.lora.layers import LoRALayer
from types import SimpleNamespace
logging.info("reinit lora modules.")
with open(args.lora_init_yaml, 'r') as file:
lora_config = yaml.safe_load(file)
generator = torch.Generator()
generator.manual_seed(seed)
dataset_conf = copy.deepcopy(configs['dataset_conf'])
dataset_conf['batch_conf']['batch_size'] = lora_config['init_batch_size']
dataset_type = configs.get('dataset', 'asr')
dataset = init_dataset(dataset_type, args.data_type, args.train_data,
tokenizer, dataset_conf, True)
dataloader = DataLoader(dataset,
batch_size=None,
pin_memory=args.pin_memory,
num_workers=args.num_workers,
persistent_workers=True,
generator=generator,
prefetch_factor=args.prefetch)
additional_kwargs = {}
if lora_config["init_config"]["mode"] == "gradient":
named_grads = estimate_gradient(model, dataloader,
lora_config['init_iters'])
additional_kwargs["named_grads"] = named_grads
lora_config = SimpleNamespace(**lora_config["init_config"])
for name, module in tqdm(
model.named_modules(),
desc="Reinitializing Lora",
total=len(list(model.named_modules())),
):
if isinstance(module, LoRALayer):
reinit_lora_modules(name, module, lora_config, **additional_kwargs)
# lora_init_model needs to be saved, w0 = w0 - A0 * B0
save_checkpoint(model, os.path.join(args.model_dir, "lora_init.pt"),
infos={"tag": "lora_init", **configs})
|