Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,002 Bytes
568e264 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
# Copyright (c) 2023 Wenet Community. (authors: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Requirements:
```bash
pip install -U openai-whisper
```
Example:
```bash
# Converts the model from OpenAI to WeNet format:
python convert_whisper_to_wenet_config_and_ckpt.py \
--whisper_ckpt large-v3.pt \
--output_dir exp/whisper/large-v3
```
"""
import argparse
import copy
import os
import sys
import torch
import yaml
_cpath_ = sys.path[0]
sys.path.remove(_cpath_)
from whisper.tokenizer import get_tokenizer
sys.path.insert(0, _cpath_)
def convert_to_wenet_yaml(tokenizer, dims, wenet_yaml_path: str):
configs = {}
configs['input_dim'] = dims['n_mels']
configs['output_dim'] = dims['n_vocab']
assert dims['n_vocab'] == tokenizer.encoding.n_vocab, "{} v.s. {}".format(
dims['n_vocab'], tokenizer.encoding.n_vocab)
configs['encoder'] = 'transformer'
configs['encoder_conf'] = {}
configs['encoder_conf']['gradient_checkpointing'] = True
configs['encoder_conf']['input_layer'] = 'conv1d2'
configs['encoder_conf']['output_size'] = dims['n_audio_state']
configs['encoder_conf']['attention_heads'] = dims['n_audio_head']
configs['encoder_conf']['linear_units'] = dims['n_audio_state'] * 4
configs['encoder_conf']['num_blocks'] = dims['n_audio_layer']
configs['encoder_conf']['dropout_rate'] = 0.1
configs['encoder_conf']['positional_dropout_rate'] = 0.1
configs['encoder_conf']['attention_dropout_rate'] = 0.0
configs['encoder_conf']['normalize_before'] = True
configs['encoder_conf']['use_dynamic_chunk'] = False
configs['encoder_conf']['use_dynamic_left_chunk'] = False
configs['encoder_conf']['pos_enc_layer_type'] = "abs_pos_whisper"
configs['encoder_conf']['static_chunk_size'] = -1
configs['encoder_conf']['key_bias'] = False
configs['encoder_conf']['activation_type'] = "gelu"
configs['decoder'] = 'transformer'
configs['decoder_conf'] = {}
configs['decoder_conf']['tie_word_embedding'] = True
configs['decoder_conf']['gradient_checkpointing'] = True
configs['decoder_conf']['attention_heads'] = dims['n_text_head']
configs['decoder_conf']['linear_units'] = dims['n_text_state'] * 4
configs['decoder_conf']['num_blocks'] = dims['n_text_layer']
configs['decoder_conf']['dropout_rate'] = 0.1
configs['decoder_conf']['positional_dropout_rate'] = 0.1
configs['decoder_conf']['self_attention_dropout_rate'] = 0.0
configs['decoder_conf']['src_attention_dropout_rate'] = 0.0
configs['decoder_conf']['input_layer'] = "embed_learnable_pe"
configs['decoder_conf']['use_output_layer'] = True
configs['decoder_conf']['normalize_before'] = True
configs['decoder_conf']['src_attention'] = True
configs['decoder_conf']['key_bias'] = False
configs['decoder_conf']['activation_type'] = "gelu"
configs['tokenizer'] = 'whisper'
configs['tokenizer_conf'] = {}
configs['tokenizer_conf']['is_multilingual'] = dims['n_vocab'] >= 51865
configs['tokenizer_conf']['num_languages'] = dims['n_vocab'] - 51765 - \
int(configs['tokenizer_conf']['is_multilingual'])
configs['tokenizer_conf']['split_with_space'] = False
configs['tokenizer_conf']['bpe_path'] = None
configs['tokenizer_conf']['symbol_table_path'] = None
configs['tokenizer_conf']['non_lang_syms_path'] = None
configs['tokenizer_conf']['special_tokens'] = {}
configs['tokenizer_conf']['special_tokens']['sot'] = tokenizer.sot
configs['tokenizer_conf']['special_tokens']['eot'] = tokenizer.eot
configs['tokenizer_conf']['special_tokens'][
'sot_prev'] = tokenizer.sot_prev
configs['tokenizer_conf']['special_tokens'][
'transcribe'] = tokenizer.transcribe
configs['tokenizer_conf']['special_tokens'][
'translate'] = tokenizer.translate
configs['tokenizer_conf']['special_tokens'][
'no_timestamps'] = tokenizer.no_timestamps
configs['tokenizer_conf']['special_tokens'][
'no_speech'] = tokenizer.no_speech
configs['tokenizer_conf']['special_tokens']['timestamp_begin'] = \
tokenizer.timestamp_begin
configs['ctc_conf'] = {}
configs['ctc_conf']['ctc_blank_id'] = tokenizer.no_speech
configs['cmvn'] = None
configs['cmvn_conf'] = {}
configs['cmvn_conf']['cmvn_file'] = None
configs['cmvn_conf']['is_json_cmvn'] = None
configs['model'] = "whisper"
configs['model_conf'] = {}
configs['model_conf']['ctc_weight'] = 0.3
configs['model_conf']['lsm_weight'] = 0.1
configs['model_conf']['length_normalized_loss'] = False
configs['dataset'] = "asr"
configs['dataset_conf'] = {}
configs['dataset_conf']['filter_conf'] = {}
configs['dataset_conf']['filter_conf'][
'max_length'] = dims['n_audio_ctx'] * 2 # 1/2 subsample # noqa
configs['dataset_conf']['filter_conf']['min_length'] = 0
configs['dataset_conf']['filter_conf']['token_max_length'] = dims[
'n_text_ctx']
configs['dataset_conf']['filter_conf']['token_min_length'] = 1
configs['dataset_conf']['resample_conf'] = {}
configs['dataset_conf']['resample_conf']['resample_rate'] = 16000
# NOTE: Disable speed_perturb, https://github.com/wenet-e2e/wenet/issues/2171
configs['dataset_conf']['speed_perturb'] = False
configs['dataset_conf']['spec_aug'] = True
configs['dataset_conf']['spec_aug_conf'] = {}
configs['dataset_conf']['spec_aug_conf']['num_t_mask'] = 2
configs['dataset_conf']['spec_aug_conf']['num_f_mask'] = 2
configs['dataset_conf']['spec_aug_conf']['max_t'] = 50
configs['dataset_conf']['spec_aug_conf']['max_f'] = 10
configs['dataset_conf']['spec_sub'] = True
configs['dataset_conf']['spec_sub_conf'] = {}
configs['dataset_conf']['spec_sub_conf']['num_t_sub'] = 3
configs['dataset_conf']['spec_sub_conf']['max_t'] = 30
configs['dataset_conf']['spec_trim'] = False
configs['dataset_conf']['shuffle'] = True
configs['dataset_conf']['shuffle_conf'] = {}
configs['dataset_conf']['shuffle_conf']['shuffle_size'] = 1500
configs['dataset_conf']['sort'] = True
configs['dataset_conf']['sort_conf'] = {}
configs['dataset_conf']['sort_conf']['sort_size'] = 500
configs['dataset_conf']['feats_type'] = "log_mel_spectrogram"
configs['dataset_conf']['log_mel_spectrogram_conf'] = {}
configs['dataset_conf']['log_mel_spectrogram_conf']['n_fft'] = 400
configs['dataset_conf']['log_mel_spectrogram_conf']['hop_length'] = 160
configs['dataset_conf']['log_mel_spectrogram_conf']['num_mel_bins'] = dims[
'n_mels']
configs['dataset_conf']['log_mel_spectrogram_conf']['padding'] = 0
configs['dataset_conf']['batch_conf'] = {}
configs['dataset_conf']['batch_conf']['batch_type'] = 'dynamic'
configs['dataset_conf']['batch_conf']['batch_size'] = 26
configs['dataset_conf']['batch_conf']['max_frames_in_batch'] = 12000
configs['dataset_conf']['language_conf'] = {}
configs['dataset_conf']['language_conf']['limited_langs'] = ['zh']
configs['grad_clip'] = 5
configs['accum_grad'] = 4
configs['max_epoch'] = 100
configs['log_interval'] = 100
configs['optim'] = "adam"
configs['optim_conf'] = {}
configs['optim_conf']['lr'] = 0.0005
configs['scheduler'] = "warmuplr"
configs['scheduler_conf'] = {}
configs['scheduler_conf']['warmup_steps'] = 12000
with open(wenet_yaml_path, '+w') as f:
f.write(yaml.dump(configs))
f.flush()
print(configs)
def convert_to_wenet_state_dict(whisper_state_dict, wenet_state_dict_path):
wenet_state_dict = {}
unused = []
print(
"===================== start CKPT Conversion ========================="
)
for name in whisper_state_dict.keys():
original_name = copy.deepcopy(name)
name = name.replace("encoder.conv1", "encoder.embed.conv.0")
name = name.replace("encoder.conv2", "encoder.embed.conv.2")
name = name.replace("decoder.token_embedding", "decoder.embed.0")
name = name.replace("encoder.blocks", "encoder.encoders")
name = name.replace("decoder.blocks", "decoder.decoders")
name = name.replace(".cross_attn.query", ".src_attn.linear_q")
name = name.replace(".cross_attn.key", ".src_attn.linear_k")
name = name.replace(".cross_attn.value", ".src_attn.linear_v")
name = name.replace(".cross_attn.out", ".src_attn.linear_out")
name = name.replace(".attn.query", ".self_attn.linear_q")
name = name.replace(".attn.key", ".self_attn.linear_k")
name = name.replace(".attn.value", ".self_attn.linear_v")
name = name.replace(".attn.out", ".self_attn.linear_out")
name = name.replace("mlp.0", "feed_forward.w_1")
name = name.replace("mlp.2", "feed_forward.w_2")
if "decoder" in name:
name = name.replace("cross_attn_ln", "norm2")
name = name.replace("mlp_ln", "norm3")
else:
name = name.replace("mlp_ln", "norm2")
name = name.replace("attn_ln", "norm1")
name = name.replace("encoder.ln_post", "encoder.after_norm")
name = name.replace("decoder.ln", "decoder.after_norm")
if original_name == "decoder.positional_embedding":
whisper_state_dict[name] = whisper_state_dict[name].unsqueeze(0)
name = "decoder.embed.1.pe"
elif original_name == "encoder.positional_embedding":
whisper_state_dict[name] = whisper_state_dict[name].unsqueeze(0)
name = "encoder.embed.pos_enc.pe"
print("name {} ==> {}".format(original_name, name))
print("type {} ==> torch.float32".format(
whisper_state_dict[original_name].dtype))
print("shape {}\n".format(whisper_state_dict[original_name].shape))
if (original_name == name):
unused.append(name)
else:
wenet_state_dict[name] = whisper_state_dict[original_name].float()
for name in unused:
print("NOTE!!! drop {}".format(name))
print("Saving fp32 ckpt to {}...".format(wenet_state_dict_path))
torch.save(wenet_state_dict, wenet_state_dict_path)
print(
"DONE\n===================== End CKPT Conversion =========================\n"
)
def convert_to_wenet_units(tokenizer, units_txt_path):
""" NOTE(xcsong):
The "units.txt" file is solely for adapting to the training API of Wenet
and for quickly checking the corresponding text of an ID when necessary.
It does not play any role in the tokenization process,
which is carried out by the tokenizer of openai-whisper.
"""
n_vocab = tokenizer.encoding.n_vocab
with open(units_txt_path, "+w") as f:
for i in range(n_vocab):
unit = str(tokenizer.encoding.decode_single_token_bytes(i))
if len(unit) == 0:
unit = str(i)
print("can not decode id {}, convert to str({})".format(i, i))
unit = unit.replace(" ", "<space>")
f.write("{} {}\n".format(unit, i))
f.flush()
def get_args():
parser = argparse.ArgumentParser(description='load and parse whisper')
# yapf: disable
parser.add_argument(
'--whisper_ckpt',
required=True,
help='https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt' # noqa
)
# yapf: enable
parser.add_argument('--output_dir',
default='.',
help='output file in wenet\'s style: ' +
'units.txt, train.yaml, model.pt')
args = parser.parse_args()
return args
def main():
args = get_args()
checkpoint = torch.load(args.whisper_ckpt, map_location="cpu")
multilingual = checkpoint["dims"]['n_vocab'] >= 51865
num_languages = checkpoint["dims"]['n_vocab'] - 51765 - int(multilingual)
tokenizer = get_tokenizer(multilingual=multilingual,
num_languages=num_languages)
convert_to_wenet_state_dict(
checkpoint["model_state_dict"],
os.path.join(args.output_dir, 'wenet_whisper.pt'))
convert_to_wenet_units(tokenizer, os.path.join(args.output_dir,
'units.txt'))
convert_to_wenet_yaml(tokenizer, checkpoint["dims"],
os.path.join(args.output_dir, 'train.yaml'))
if __name__ == "__main__":
main()
|