File size: 13,002 Bytes
568e264
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
# Copyright (c) 2023 Wenet Community. (authors: Xingchen Song)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Requirements:

```bash
pip install -U openai-whisper
```

Example:

```bash
# Converts the model from OpenAI to WeNet format:
python convert_whisper_to_wenet_config_and_ckpt.py \
    --whisper_ckpt large-v3.pt \
    --output_dir exp/whisper/large-v3
```
"""

import argparse
import copy
import os
import sys
import torch
import yaml

_cpath_ = sys.path[0]
sys.path.remove(_cpath_)
from whisper.tokenizer import get_tokenizer

sys.path.insert(0, _cpath_)


def convert_to_wenet_yaml(tokenizer, dims, wenet_yaml_path: str):
    configs = {}
    configs['input_dim'] = dims['n_mels']
    configs['output_dim'] = dims['n_vocab']
    assert dims['n_vocab'] == tokenizer.encoding.n_vocab, "{} v.s. {}".format(
        dims['n_vocab'], tokenizer.encoding.n_vocab)

    configs['encoder'] = 'transformer'
    configs['encoder_conf'] = {}
    configs['encoder_conf']['gradient_checkpointing'] = True
    configs['encoder_conf']['input_layer'] = 'conv1d2'
    configs['encoder_conf']['output_size'] = dims['n_audio_state']
    configs['encoder_conf']['attention_heads'] = dims['n_audio_head']
    configs['encoder_conf']['linear_units'] = dims['n_audio_state'] * 4
    configs['encoder_conf']['num_blocks'] = dims['n_audio_layer']
    configs['encoder_conf']['dropout_rate'] = 0.1
    configs['encoder_conf']['positional_dropout_rate'] = 0.1
    configs['encoder_conf']['attention_dropout_rate'] = 0.0
    configs['encoder_conf']['normalize_before'] = True
    configs['encoder_conf']['use_dynamic_chunk'] = False
    configs['encoder_conf']['use_dynamic_left_chunk'] = False
    configs['encoder_conf']['pos_enc_layer_type'] = "abs_pos_whisper"
    configs['encoder_conf']['static_chunk_size'] = -1
    configs['encoder_conf']['key_bias'] = False
    configs['encoder_conf']['activation_type'] = "gelu"

    configs['decoder'] = 'transformer'
    configs['decoder_conf'] = {}
    configs['decoder_conf']['tie_word_embedding'] = True
    configs['decoder_conf']['gradient_checkpointing'] = True
    configs['decoder_conf']['attention_heads'] = dims['n_text_head']
    configs['decoder_conf']['linear_units'] = dims['n_text_state'] * 4
    configs['decoder_conf']['num_blocks'] = dims['n_text_layer']
    configs['decoder_conf']['dropout_rate'] = 0.1
    configs['decoder_conf']['positional_dropout_rate'] = 0.1
    configs['decoder_conf']['self_attention_dropout_rate'] = 0.0
    configs['decoder_conf']['src_attention_dropout_rate'] = 0.0
    configs['decoder_conf']['input_layer'] = "embed_learnable_pe"
    configs['decoder_conf']['use_output_layer'] = True
    configs['decoder_conf']['normalize_before'] = True
    configs['decoder_conf']['src_attention'] = True
    configs['decoder_conf']['key_bias'] = False
    configs['decoder_conf']['activation_type'] = "gelu"

    configs['tokenizer'] = 'whisper'
    configs['tokenizer_conf'] = {}
    configs['tokenizer_conf']['is_multilingual'] = dims['n_vocab'] >= 51865
    configs['tokenizer_conf']['num_languages'] = dims['n_vocab'] - 51765 - \
        int(configs['tokenizer_conf']['is_multilingual'])
    configs['tokenizer_conf']['split_with_space'] = False
    configs['tokenizer_conf']['bpe_path'] = None
    configs['tokenizer_conf']['symbol_table_path'] = None
    configs['tokenizer_conf']['non_lang_syms_path'] = None
    configs['tokenizer_conf']['special_tokens'] = {}
    configs['tokenizer_conf']['special_tokens']['sot'] = tokenizer.sot
    configs['tokenizer_conf']['special_tokens']['eot'] = tokenizer.eot
    configs['tokenizer_conf']['special_tokens'][
        'sot_prev'] = tokenizer.sot_prev
    configs['tokenizer_conf']['special_tokens'][
        'transcribe'] = tokenizer.transcribe
    configs['tokenizer_conf']['special_tokens'][
        'translate'] = tokenizer.translate
    configs['tokenizer_conf']['special_tokens'][
        'no_timestamps'] = tokenizer.no_timestamps
    configs['tokenizer_conf']['special_tokens'][
        'no_speech'] = tokenizer.no_speech
    configs['tokenizer_conf']['special_tokens']['timestamp_begin'] = \
        tokenizer.timestamp_begin

    configs['ctc_conf'] = {}
    configs['ctc_conf']['ctc_blank_id'] = tokenizer.no_speech

    configs['cmvn'] = None
    configs['cmvn_conf'] = {}
    configs['cmvn_conf']['cmvn_file'] = None
    configs['cmvn_conf']['is_json_cmvn'] = None

    configs['model'] = "whisper"
    configs['model_conf'] = {}
    configs['model_conf']['ctc_weight'] = 0.3
    configs['model_conf']['lsm_weight'] = 0.1
    configs['model_conf']['length_normalized_loss'] = False

    configs['dataset'] = "asr"
    configs['dataset_conf'] = {}
    configs['dataset_conf']['filter_conf'] = {}
    configs['dataset_conf']['filter_conf'][
        'max_length'] = dims['n_audio_ctx'] * 2  # 1/2 subsample # noqa
    configs['dataset_conf']['filter_conf']['min_length'] = 0
    configs['dataset_conf']['filter_conf']['token_max_length'] = dims[
        'n_text_ctx']
    configs['dataset_conf']['filter_conf']['token_min_length'] = 1
    configs['dataset_conf']['resample_conf'] = {}
    configs['dataset_conf']['resample_conf']['resample_rate'] = 16000
    # NOTE: Disable speed_perturb, https://github.com/wenet-e2e/wenet/issues/2171
    configs['dataset_conf']['speed_perturb'] = False
    configs['dataset_conf']['spec_aug'] = True
    configs['dataset_conf']['spec_aug_conf'] = {}
    configs['dataset_conf']['spec_aug_conf']['num_t_mask'] = 2
    configs['dataset_conf']['spec_aug_conf']['num_f_mask'] = 2
    configs['dataset_conf']['spec_aug_conf']['max_t'] = 50
    configs['dataset_conf']['spec_aug_conf']['max_f'] = 10
    configs['dataset_conf']['spec_sub'] = True
    configs['dataset_conf']['spec_sub_conf'] = {}
    configs['dataset_conf']['spec_sub_conf']['num_t_sub'] = 3
    configs['dataset_conf']['spec_sub_conf']['max_t'] = 30
    configs['dataset_conf']['spec_trim'] = False
    configs['dataset_conf']['shuffle'] = True
    configs['dataset_conf']['shuffle_conf'] = {}
    configs['dataset_conf']['shuffle_conf']['shuffle_size'] = 1500
    configs['dataset_conf']['sort'] = True
    configs['dataset_conf']['sort_conf'] = {}
    configs['dataset_conf']['sort_conf']['sort_size'] = 500
    configs['dataset_conf']['feats_type'] = "log_mel_spectrogram"
    configs['dataset_conf']['log_mel_spectrogram_conf'] = {}
    configs['dataset_conf']['log_mel_spectrogram_conf']['n_fft'] = 400
    configs['dataset_conf']['log_mel_spectrogram_conf']['hop_length'] = 160
    configs['dataset_conf']['log_mel_spectrogram_conf']['num_mel_bins'] = dims[
        'n_mels']
    configs['dataset_conf']['log_mel_spectrogram_conf']['padding'] = 0
    configs['dataset_conf']['batch_conf'] = {}
    configs['dataset_conf']['batch_conf']['batch_type'] = 'dynamic'
    configs['dataset_conf']['batch_conf']['batch_size'] = 26
    configs['dataset_conf']['batch_conf']['max_frames_in_batch'] = 12000
    configs['dataset_conf']['language_conf'] = {}
    configs['dataset_conf']['language_conf']['limited_langs'] = ['zh']

    configs['grad_clip'] = 5
    configs['accum_grad'] = 4
    configs['max_epoch'] = 100
    configs['log_interval'] = 100

    configs['optim'] = "adam"
    configs['optim_conf'] = {}
    configs['optim_conf']['lr'] = 0.0005
    configs['scheduler'] = "warmuplr"
    configs['scheduler_conf'] = {}
    configs['scheduler_conf']['warmup_steps'] = 12000

    with open(wenet_yaml_path, '+w') as f:
        f.write(yaml.dump(configs))
        f.flush()

    print(configs)


def convert_to_wenet_state_dict(whisper_state_dict, wenet_state_dict_path):
    wenet_state_dict = {}
    unused = []
    print(
        "===================== start CKPT Conversion ========================="
    )
    for name in whisper_state_dict.keys():
        original_name = copy.deepcopy(name)
        name = name.replace("encoder.conv1", "encoder.embed.conv.0")
        name = name.replace("encoder.conv2", "encoder.embed.conv.2")
        name = name.replace("decoder.token_embedding", "decoder.embed.0")
        name = name.replace("encoder.blocks", "encoder.encoders")
        name = name.replace("decoder.blocks", "decoder.decoders")
        name = name.replace(".cross_attn.query", ".src_attn.linear_q")
        name = name.replace(".cross_attn.key", ".src_attn.linear_k")
        name = name.replace(".cross_attn.value", ".src_attn.linear_v")
        name = name.replace(".cross_attn.out", ".src_attn.linear_out")
        name = name.replace(".attn.query", ".self_attn.linear_q")
        name = name.replace(".attn.key", ".self_attn.linear_k")
        name = name.replace(".attn.value", ".self_attn.linear_v")
        name = name.replace(".attn.out", ".self_attn.linear_out")
        name = name.replace("mlp.0", "feed_forward.w_1")
        name = name.replace("mlp.2", "feed_forward.w_2")
        if "decoder" in name:
            name = name.replace("cross_attn_ln", "norm2")
            name = name.replace("mlp_ln", "norm3")
        else:
            name = name.replace("mlp_ln", "norm2")
        name = name.replace("attn_ln", "norm1")
        name = name.replace("encoder.ln_post", "encoder.after_norm")
        name = name.replace("decoder.ln", "decoder.after_norm")
        if original_name == "decoder.positional_embedding":
            whisper_state_dict[name] = whisper_state_dict[name].unsqueeze(0)
            name = "decoder.embed.1.pe"
        elif original_name == "encoder.positional_embedding":
            whisper_state_dict[name] = whisper_state_dict[name].unsqueeze(0)
            name = "encoder.embed.pos_enc.pe"
        print("name  {} ==> {}".format(original_name, name))
        print("type  {} ==> torch.float32".format(
            whisper_state_dict[original_name].dtype))
        print("shape {}\n".format(whisper_state_dict[original_name].shape))
        if (original_name == name):
            unused.append(name)
        else:
            wenet_state_dict[name] = whisper_state_dict[original_name].float()
    for name in unused:
        print("NOTE!!! drop {}".format(name))
    print("Saving fp32 ckpt to {}...".format(wenet_state_dict_path))
    torch.save(wenet_state_dict, wenet_state_dict_path)
    print(
        "DONE\n===================== End CKPT Conversion =========================\n"
    )


def convert_to_wenet_units(tokenizer, units_txt_path):
    """ NOTE(xcsong):
        The "units.txt" file is solely for adapting to the training API of Wenet
        and for quickly checking the corresponding text of an ID when necessary.
        It does not play any role in the tokenization process,
        which is carried out by the tokenizer of openai-whisper.
    """
    n_vocab = tokenizer.encoding.n_vocab
    with open(units_txt_path, "+w") as f:
        for i in range(n_vocab):
            unit = str(tokenizer.encoding.decode_single_token_bytes(i))
            if len(unit) == 0:
                unit = str(i)
                print("can not decode id {}, convert to str({})".format(i, i))
            unit = unit.replace(" ", "<space>")
            f.write("{} {}\n".format(unit, i))
            f.flush()


def get_args():
    parser = argparse.ArgumentParser(description='load and parse whisper')
    # yapf: disable
    parser.add_argument(
        '--whisper_ckpt',
        required=True,
        help='https://openaipublic.azureedge.net/main/whisper/models/e5b1a55b89c1367dacf97e3e19bfd829a01529dbfdeefa8caeb59b3f1b81dadb/large-v3.pt'  # noqa
    )
    # yapf: enable
    parser.add_argument('--output_dir',
                        default='.',
                        help='output file in wenet\'s style: ' +
                        'units.txt, train.yaml, model.pt')
    args = parser.parse_args()
    return args


def main():
    args = get_args()
    checkpoint = torch.load(args.whisper_ckpt, map_location="cpu")
    multilingual = checkpoint["dims"]['n_vocab'] >= 51865
    num_languages = checkpoint["dims"]['n_vocab'] - 51765 - int(multilingual)
    tokenizer = get_tokenizer(multilingual=multilingual,
                              num_languages=num_languages)

    convert_to_wenet_state_dict(
        checkpoint["model_state_dict"],
        os.path.join(args.output_dir, 'wenet_whisper.pt'))
    convert_to_wenet_units(tokenizer, os.path.join(args.output_dir,
                                                   'units.txt'))
    convert_to_wenet_yaml(tokenizer, checkpoint["dims"],
                          os.path.join(args.output_dir, 'train.yaml'))


if __name__ == "__main__":

    main()