OSUM / wenet /dataset /datapipes.py
tomxxie
适配zeroGPU
568e264
raw
history blame
16.3 kB
# Copyright (c) 2023 Wenet Community. (authors: Dinghao Zhou)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from collections.abc import Callable
import copy
import sys
import tarfile
import logging
from typing import List, Optional
import numpy as np
import torch
from torch.utils.data import IterDataPipe, functional_datapipe
from torch.utils.data import datapipes
from torch.utils.data.datapipes.iter import Mapper
from torch.utils.data.datapipes.iter.sharding import (
SHARDING_PRIORITIES, ShardingFilterIterDataPipe)
from torch.utils.data.datapipes.utils.common import _check_unpickable_fn
from wenet.dataset.processor import parse_url
@functional_datapipe("map_ignore_error")
class MapperIgnoreErrorDataPipe(Mapper):
def __init__(self,
dataset: IterDataPipe,
fn: Callable,
input_col=None,
output_col=None,
log_error: bool = True) -> None:
super().__init__(dataset, fn, input_col, output_col)
self._iter = None
self.log_error = log_error
def __iter__(self):
if self._iter is None:
self._iter = iter(self.datapipe)
while True:
try:
elem = next(self._iter)
yield self._apply_fn(elem)
except StopIteration:
self._iter = None
return
except Exception as ex:
if self.log_error:
logging.warning(str(ex))
@functional_datapipe('bucket_by_sequence_length')
class BucketBySequenceLengthDataPipe(IterDataPipe):
def __init__(
self,
dataset: IterDataPipe,
elem_length_func,
bucket_boundaries: List[int],
bucket_batch_sizes: List[int],
wrapper_class=None,
) -> None:
super().__init__()
_check_unpickable_fn(elem_length_func)
assert len(bucket_batch_sizes) == len(bucket_boundaries) + 1
self.bucket_batch_sizes = bucket_batch_sizes
self.bucket_boundaries = bucket_boundaries + [sys.maxsize]
self.elem_length_func = elem_length_func
self._group_dp = GroupByWindowDataPipe(dataset,
self._element_to_bucket_id,
self._window_size_func,
wrapper_class=wrapper_class)
def __iter__(self):
yield from self._group_dp
def _element_to_bucket_id(self, elem):
seq_len = self.elem_length_func(elem)
bucket_id = 0
for (i, b) in enumerate(self.bucket_boundaries):
if seq_len < b:
bucket_id = i
break
return bucket_id
def _window_size_func(self, bucket_id):
return self.bucket_batch_sizes[bucket_id]
@functional_datapipe("group_by_window")
class GroupByWindowDataPipe(datapipes.iter.Grouper):
def __init__(
self,
dataset: IterDataPipe,
key_func,
window_size_func,
wrapper_class=None,
):
super().__init__(dataset,
key_func,
keep_key=False,
group_size=None,
drop_remaining=False)
_check_unpickable_fn(window_size_func)
self.dp = dataset
self.window_size_func = window_size_func
if wrapper_class is not None:
_check_unpickable_fn(wrapper_class)
del self.wrapper_class
self.wrapper_class = wrapper_class
def __iter__(self):
for x in self.datapipe:
key = self.group_key_fn(x)
self.buffer_elements[key].append(x)
self.curr_buffer_size += 1
group_size = self.window_size_func(key)
if group_size == len(self.buffer_elements[key]):
result = self.wrapper_class(self.buffer_elements[key])
yield result
self.curr_buffer_size -= len(self.buffer_elements[key])
del self.buffer_elements[key]
if self.curr_buffer_size == self.max_buffer_size:
result_to_yield = self._remove_biggest_key()
if result_to_yield is not None:
result = self.wrapper_class(result_to_yield)
yield result
for key in tuple(self.buffer_elements.keys()):
result = self.wrapper_class(self.buffer_elements.pop(key))
self.curr_buffer_size -= len(result)
yield result
@functional_datapipe("sort")
class SortDataPipe(IterDataPipe):
def __init__(self,
dataset: IterDataPipe,
buffer_size: int = 500,
key_func=None,
reverse=False) -> None:
if key_func is not None:
_check_unpickable_fn(key_func)
self.buffer_size = buffer_size
super().__init__()
self.dp = dataset
self._buffer = []
self.key_func = key_func
self.reverse = reverse
def __iter__(self):
for elem in self.dp:
self._buffer.append(elem)
if len(self._buffer) >= self.buffer_size:
self._buffer.sort(key=self.key_func, reverse=self.reverse)
for x in self._buffer:
yield x
del self._buffer
self._buffer = []
# The sample left over
self._buffer.sort(key=self.key_func, reverse=self.reverse)
for x in self._buffer:
yield x
del self._buffer
self._buffer = []
@functional_datapipe("dynamic_batch")
class DynamicBatchDataPipe(IterDataPipe):
def __init__(self, dataset: IterDataPipe, window_class,
wrapper_class) -> None:
_check_unpickable_fn(window_class)
_check_unpickable_fn(wrapper_class)
super().__init__()
self.dp = dataset
assert window_class is not None
assert wrapper_class is not None
self.window_class = window_class
self._buffer = []
self._wrappr_class = wrapper_class
def __iter__(self):
for elem in self.dp:
if not self.window_class(elem, len(self._buffer)):
self._buffer.append(elem)
else:
if len(self._buffer) > 0:
yield self._wrappr_class(self._buffer)
del self._buffer
self._buffer = [elem]
if len(self._buffer) > 0:
yield self._wrappr_class(self._buffer)
del self._buffer
self._buffer = []
@functional_datapipe("prefetch")
class PrefetchDataPipe(IterDataPipe):
"""Performs prefetching"""
def __init__(
self,
dataset: IterDataPipe,
buffer_size: int = 500,
):
# TODO(Mddct): support multiprocessing pool with shared-memory to
# prefetch
super().__init__()
self.dp = dataset
self._iter = None
self._prefetch_buffer_size = buffer_size
self._buffer = None
if self._prefetch_buffer_size > 0:
self._buffer = collections.deque(maxlen=self._prefetch_buffer_size)
def __iter__(self):
if self._prefetch_buffer_size > 0:
if self._iter is None:
self._iter = iter(self.dp)
assert self._buffer is not None
while True:
if len(self._buffer) <= self._prefetch_buffer_size // 2:
while len(self._buffer) < self._prefetch_buffer_size:
try:
self._buffer.append(next(self._iter))
except StopIteration:
if len(self._buffer) != 0:
while len(self._buffer) > 0:
yield self._buffer.popleft()
self._iter = None
return
while len(self._buffer) > self._prefetch_buffer_size // 2:
elem = self._buffer.popleft()
yield elem
else:
yield from self.dp
@functional_datapipe("repeat")
class RepeatDatapipe(IterDataPipe):
def __init__(self, dataset: IterDataPipe, count: int = -1):
super().__init__()
self.dp = dataset
self.count = count
def __iter__(self):
if self.count == 1:
yield from self.dp
return
i = 0
while self.count < 0 or i < self.count:
for elem in self.dp:
new_elem = copy.copy(elem)
yield new_elem
i += 1
@functional_datapipe("shard")
class ShardDataPipe(ShardingFilterIterDataPipe):
def __init__(self, dataset: IterDataPipe, partition: bool = False):
super().__init__(dataset, None)
self.partition = partition
self.dp = dataset
def apply_sharding(self, num_of_instances: int, instance_id: int,
sharding_group: SHARDING_PRIORITIES):
if self.partition:
return super().apply_sharding(num_of_instances, instance_id,
sharding_group)
else:
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
info = torch.utils.data.get_worker_info()
if info is None:
self.num_of_instances = 1
self.instance_id = 0
else:
n_workers_per_device = info.num_workers
self.num_of_instances = n_workers_per_device
self.instance_id = info.id
@functional_datapipe("interleave")
class InterlaveDataPipe(IterDataPipe):
def __init__(
self,
source_datapipes: List[IterDataPipe],
weights: Optional[List[float]] = None,
seed=2027,
):
super().__init__()
self.rng = np.random.default_rng(seed)
self.source_datapipes = source_datapipes
self.weights = weights
if weights is None:
self.weights = [1 / len(self.source_datapipes)] * len(
self.source_datapipes)
else:
self.weights = [weight / sum(weights) for weight in weights]
self.iters = None
def __iter__(self):
weights = copy.deepcopy(self.weights)
exhausted = len(self.source_datapipes) * [False]
if self.iters is None:
self.iters = [(i, iter(d))
for i, d in enumerate(self.source_datapipes)]
while True:
# TODO(Mddct): rng
index_iter = self.rng.choice(self.iters, p=weights)
i, ite = index_iter
try:
elem = next(ite)
yield elem
except StopIteration:
weights[i] = 0.
exhausted[i] = True
if all(exhausted):
return
weights = [weight / sum(weights) for weight in weights]
class TextLineDataPipe(IterDataPipe):
""" Streamming Text line
"""
def __init__(self, filenames, mode='r'):
super().__init__()
_dp = datapipes.iter.FileLister(filenames)
_dp = datapipes.iter.FileOpener(_dp, mode=mode)
self.dp = _dp
def __iter__(self):
for fname, stream in self.dp:
for line in stream:
line = line.strip('\n')
yield {"file_name": fname, "line": line}
stream.close()
@functional_datapipe("tar_file_and_group")
class TarsDataPipe(IterDataPipe):
""" Decode wenet's tar , yield {'txt': "...", "raw": "..."}
"""
def __init__(self, dataset: IterDataPipe) -> None:
super().__init__()
self.dp = dataset
def __iter__(self):
from wenet.dataset.processor import AUDIO_FORMAT_SETS
for sample in self.dp:
assert 'file_name' in sample
assert 'line' in sample
assert 'stream' in sample
try:
with tarfile.open(fileobj=sample['stream'],
mode="r:*") as stream:
prev_prefix = None
example = {
'file_name': sample['file_name'],
'tar_file_name': sample['line']
}
valid = True
for tarinfo in stream:
name = tarinfo.name
pos = name.rfind('.')
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1:]
if prev_prefix is not None and prefix != prev_prefix:
example['key'] = prev_prefix
if valid:
yield example
example = {
'file_name': sample['file_name'],
'tar_file_name': sample['line']
}
valid = True
with stream.extractfile(tarinfo) as file_obj:
try:
if postfix == 'txt':
example['txt'] = file_obj.read().decode(
'utf8').strip()
elif postfix in AUDIO_FORMAT_SETS:
example['wav'] = file_obj.read()
else:
example[postfix] = file_obj.read()
except Exception as ex:
valid = False
logging.warning(
'error to parse {}'.format(name))
prev_prefix = prefix
if prev_prefix is not None:
example['key'] = prev_prefix
yield example
except Exception as ex:
msg = 'In tar_file_and_group: {} when processing {}'.format(
ex, sample['line'])
logging.warning(msg)
finally:
if 'process' in sample:
sample['process'].communicate()
sample['stream'].close()
class WenetRawDatasetSource(IterDataPipe):
def __init__(self,
filenames: str,
prefetch: int = 500,
partition: bool = True,
shuffle: bool = False,
shuffle_size: int = 10000,
cycle: int = 1) -> None:
super().__init__()
self.dp = TextLineDataPipe(filenames)
if shuffle:
self.dp = self.dp.shuffle(buffer_size=shuffle_size)
self.dp = self.dp.repeat(cycle).prefetch(prefetch)
self.dp = self.dp.shard(partition)
def __iter__(self):
for d in self.dp:
yield d
class WenetTarShardDatasetSource(IterDataPipe):
def __init__(self,
filenames: str,
prefetch: int = 500,
partition: bool = True,
shuffle: bool = False,
shuffle_size: int = 10000,
cycle: int = 1) -> None:
super().__init__()
self.dp = TextLineDataPipe(filenames)
if shuffle:
self.dp = self.dp.shuffle(buffer_size=shuffle_size)
self.dp = self.dp.repeat(cycle)
self.dp = self.dp.shard(partition).map_ignore_error(
parse_url).tar_file_and_group().prefetch(prefetch)
def __iter__(self):
for d in self.dp:
yield d