OSUM / wenet /dataset /dataset.py
tomxxie
适配zeroGPU
568e264
raw
history blame
8.47 kB
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import random
import torch
import torch.distributed as dist
from torch.utils.data import IterableDataset
import wenet.dataset.deprecated.processor as processor
from wenet.text.base_tokenizer import BaseTokenizer
from wenet.utils.file_utils import read_lists
class Processor(IterableDataset):
def __init__(self, source, f, *args, **kw):
assert callable(f)
self.source = source
self.f = f
self.args = args
self.kw = kw
def set_epoch(self, epoch):
self.source.set_epoch(epoch)
def __iter__(self):
""" Return an iterator over the source dataset processed by the
given processor.
"""
assert self.source is not None
assert callable(self.f)
return self.f(iter(self.source), *self.args, **self.kw)
def apply(self, f):
assert callable(f)
return Processor(self, f, *self.args, **self.kw)
class DistributedSampler:
def __init__(self, shuffle=True, partition=True, split_num=1):
self.epoch = -1
self.update()
self.shuffle = shuffle
self.partition = partition
self.split_num = split_num
def update(self):
assert dist.is_available()
if dist.is_initialized():
self.rank = dist.get_rank()
self.world_size = dist.get_world_size()
else:
self.rank = 0
self.world_size = 1
worker_info = torch.utils.data.get_worker_info()
if worker_info is None:
self.worker_id = 0
self.num_workers = 1
else:
self.worker_id = worker_info.id
self.num_workers = worker_info.num_workers
return dict(rank=self.rank,
world_size=self.world_size,
worker_id=self.worker_id,
num_workers=self.num_workers)
def set_epoch(self, epoch):
self.epoch = epoch
def split_data(self, total_num):
data = list(range(total_num))
sub_epoch = self.epoch + 1
full_epoch = sub_epoch // self.split_num
num_per_sub_epochs = total_num // self.split_num
random.Random(full_epoch).shuffle(data)
split_index = sub_epoch - full_epoch * self.split_num
begin = split_index * num_per_sub_epochs
end = (begin + num_per_sub_epochs
if (split_index + 1) < self.split_num else
total_num)
# print(f'begin: {begin}, end: {end}, world_size: {self.world_size}')
return data[begin:end]
def sample(self, data, split_num=1):
""" Sample data according to rank/world_size/num_workers
Args:
data(List): input data list
Returns:
List: data list after sample
"""
if self.split_num == 1:
data = list(range(len(data)))
else:
data = self.split_data(len(data))
# TODO(Binbin Zhang): fix this
# We can not handle uneven data for CV on DDP, so we don't
# sample data by rank, that means every GPU gets the same
# and all the CV data
if self.partition:
if self.shuffle:
random.Random(self.epoch).shuffle(data)
data = data[self.rank::self.world_size]
# print(f'num dataset: {len(data)}')
data = data[self.worker_id::self.num_workers]
self.epoch += 1
return data
class DataList(IterableDataset):
def __init__(self, lists, shuffle=True, partition=True, split_num=1):
self.lists = lists
self.sampler = DistributedSampler(shuffle, partition, split_num)
def set_epoch(self, epoch):
self.sampler.set_epoch(epoch)
def __iter__(self):
sampler_info = self.sampler.update()
indexes = self.sampler.sample(self.lists)
for index in indexes:
# yield dict(src=src)
data = dict(src=self.lists[index])
data.update(sampler_info)
yield data
def Dataset(data_type,
data_list_file,
tokenizer: BaseTokenizer,
conf,
partition=True):
""" Construct dataset from arguments
We have two shuffle stage in the Dataset. The first is global
shuffle at shards tar/raw file level. The second is global shuffle
at training samples level.
Args:
data_type(str): raw/shard
bpe_model(str): model for english bpe part
partition(bool): whether to do data partition in terms of rank
"""
assert data_type in ['raw', 'shard', 'shard_full_data']
lists = read_lists(data_list_file)
shuffle = conf.get('shuffle', True)
split_num = conf.get('split_num', 1)
dataset = DataList(lists, shuffle=shuffle, partition=partition, split_num=split_num)
if data_type == 'shard':
dataset = Processor(dataset, processor.url_opener)
dataset = Processor(dataset, processor.tar_file_and_group)
elif data_type == 'shard_full_data':
dataset = Processor(dataset, processor.url_opener)
dataset = Processor(dataset, processor.tar_file_and_group_full_data)
else:
dataset = Processor(dataset, processor.parse_raw)
speaker_conf = conf.get('speaker_conf', None)
if speaker_conf is not None:
dataset = Processor(dataset, processor.parse_speaker, **speaker_conf)
if conf.get('eod_id', None) is not None:
tokenizer.eod_id = conf['eod_id']
# prompt dict
from gxl_ai_utils.utils import utils_file
global_prompt_dict = utils_file.load_dict_from_yaml('conf/prompt_stage4.yaml')
dataset = Processor(dataset, processor.tokenize, tokenizer,
global_prompt_dict=global_prompt_dict)
filter_conf = conf.get('filter_conf', {})
dataset = Processor(dataset, processor.filter, **filter_conf)
resample_conf = conf.get('resample_conf', {})
dataset = Processor(dataset, processor.resample, **resample_conf)
speed_perturb = conf.get('speed_perturb', False)
if speed_perturb:
dataset = Processor(dataset, processor.speed_perturb)
feats_type = conf.get('feats_type', 'fbank')
assert feats_type in ['fbank', 'mfcc', 'log_mel_spectrogram']
if feats_type == 'fbank':
fbank_conf = conf.get('fbank_conf', {})
dataset = Processor(dataset, processor.compute_fbank, **fbank_conf)
elif feats_type == 'mfcc':
mfcc_conf = conf.get('mfcc_conf', {})
dataset = Processor(dataset, processor.compute_mfcc, **mfcc_conf)
elif feats_type == 'log_mel_spectrogram':
log_mel_spectrogram_conf = conf.get('log_mel_spectrogram_conf', {})
dataset = Processor(dataset, processor.compute_log_mel_spectrogram,
**log_mel_spectrogram_conf)
spec_aug = conf.get('spec_aug', True)
spec_sub = conf.get('spec_sub', False)
spec_trim = conf.get('spec_trim', False)
if spec_aug:
spec_aug_conf = conf.get('spec_aug_conf', {})
dataset = Processor(dataset, processor.spec_aug, **spec_aug_conf)
if spec_sub:
spec_sub_conf = conf.get('spec_sub_conf', {})
dataset = Processor(dataset, processor.spec_sub, **spec_sub_conf)
if spec_trim:
spec_trim_conf = conf.get('spec_trim_conf', {})
dataset = Processor(dataset, processor.spec_trim, **spec_trim_conf)
if shuffle:
shuffle_conf = conf.get('shuffle_conf', {})
dataset = Processor(dataset, processor.shuffle, **shuffle_conf)
sort = conf.get('sort', True)
if sort:
sort_conf = conf.get('sort_conf', {})
dataset = Processor(dataset, processor.sort, **sort_conf)
batch_conf = conf.get('batch_conf', {})
dataset = Processor(dataset, processor.batch, **batch_conf)
dataset = Processor(dataset, processor.padding)
return dataset