tomxxie
适配zeroGPU
568e264
raw
history blame
38.7 kB
# Copyright (c) 2021 Mobvoi Inc. (authors: Binbin Zhang)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import copy
import librosa
import logging
import json
import random
import tarfile
from subprocess import PIPE, Popen
from urllib.parse import urlparse
import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
import torch.nn.functional as F
from gxl_ai_utils.utils import utils_file
from torch.nn.utils.rnn import pad_sequence
from wenet.text.base_tokenizer import BaseTokenizer
# torchaudio.utils.sox_utils.set_buffer_size(16500)
torchaudio.set_audio_backend("soundfile")
AUDIO_FORMAT_SETS = set(['flac', 'mp3', 'm4a', 'ogg', 'opus', 'wav', 'wma'])
def url_opener(data):
""" Give url or local file, return file descriptor
Inplace operation.
Args:
data(Iterable[str]): url or local file list
Returns:
Iterable[{src, stream}]
"""
for sample in data:
assert 'src' in sample
# TODO(Binbin Zhang): support HTTP
url = sample['src']
try:
pr = urlparse(url)
# local file
if pr.scheme == '' or pr.scheme == 'file':
stream = open(url, 'rb')
# network file, such as HTTP(HDFS/OSS/S3)/HTTPS/SCP
else:
cmd = f'wget -q -O - {url}'
process = Popen(cmd, shell=True, stdout=PIPE)
sample.update(process=process)
stream = process.stdout
sample.update(stream=stream)
yield sample
except Exception as ex:
logging.warning('Failed to open {}'.format(url))
def tar_file_and_group(data):
""" Expand a stream of open tar files into a stream of tar file contents.
And groups the file with same prefix
Args:
data: Iterable[{src, stream}]
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert 'stream' in sample
stream = None
try:
stream = tarfile.open(fileobj=sample['stream'], mode="r:*")
prev_prefix = None
example = {}
valid = True
for tarinfo in stream:
name = tarinfo.name
pos = name.rfind('.')
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1:]
if prev_prefix is not None and prefix != prev_prefix:
example['key'] = prev_prefix
if valid:
yield example
example = {}
valid = True
with stream.extractfile(tarinfo) as file_obj:
try:
if postfix == 'txt':
example['txt'] = file_obj.read().decode(
'utf8').strip()
elif postfix in AUDIO_FORMAT_SETS:
waveform, sample_rate = torchaudio.load(file_obj)
example['wav'] = waveform
example['sample_rate'] = sample_rate
else:
example[postfix] = file_obj.read()
except Exception as ex:
valid = False
logging.warning('error to parse {}'.format(name))
prev_prefix = prefix
if prev_prefix is not None:
example['key'] = prev_prefix
yield example
except Exception as ex:
logging.warning(
'In tar_file_and_group: {} when processing {}'.format(
ex, sample['src']))
finally:
if stream is not None:
stream.close()
if 'process' in sample:
sample['process'].communicate()
sample['stream'].close()
def tar_file_and_group_full_data(data):
""" Expand a stream of open tar files into a stream of tar file contents.
And groups the file with same prefix
Args:
data: Iterable[{src, stream}]
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert 'stream' in sample
stream = None
try:
stream = tarfile.open(fileobj=sample['stream'], mode="r:*")
prev_prefix = None
example = {}
valid = True
for tarinfo in stream:
name = tarinfo.name
pos = name.rfind('.')
assert pos > 0
prefix, postfix = name[:pos], name[pos + 1:]
if prev_prefix is not None and prefix != prev_prefix:
example['key'] = prev_prefix
if valid:
# assert 'txt' in example
if 'txt' not in example:
example['txt'] = ''
yield example
example = {}
valid = True
with stream.extractfile(tarinfo) as file_obj:
try:
if postfix == 'txt':
example['txt'] = file_obj.read().decode(
'utf8').strip()
elif postfix == 'lang':
example['lang'] = file_obj.read().decode(
'utf8').strip()
elif postfix == 'speaker':
try:
example['speaker'] = file_obj.read().decode(
'utf8').strip()
except Exception as ex:
example['speaker'] = "none"
elif postfix == 'emotion':
example['emotion'] = file_obj.read().decode(
'utf8').strip()
elif postfix == 'gender':
example['gender'] = file_obj.read().decode(
'utf8').strip()
elif postfix == 'task':
example['task'] = file_obj.read().decode(
'utf8').strip()
elif postfix == 'speech_token':
example['speech_token'] = file_obj.read()
elif postfix == 'duration':
duration_str = file_obj.read().decode(
'utf8').strip()
try:
duration_float = float(duration_str)
example['duration'] = duration_float
except Exception as ex:
logging.warning(f'error to parse duration {duration_str}')
example['duration'] = 0
elif postfix in AUDIO_FORMAT_SETS:
waveform, sample_rate = torchaudio.load(file_obj)
# 检查音频的维度
num_channels = waveform.shape[0]
# 如果音频是多通道的,则进行通道平均
if num_channels > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
example['wav'] = waveform
example['sample_rate'] = sample_rate
else:
example[postfix] = file_obj.read()
except Exception as ex:
valid = False
# logging.warning('error to parse {}'.format(name))
prev_prefix = prefix
if prev_prefix is not None:
example['key'] = prev_prefix
if 'txt' in example:
yield example
except Exception as ex:
logging.warning(
'In tar_file_and_group: {} when processing {}'.format(
ex, sample['src']))
finally:
if stream is not None:
stream.close()
if 'process' in sample:
sample['process'].communicate()
sample['stream'].close()
def parse_raw(data):
""" Parse key/wav/txt from json line
Args:
data: Iterable[str], str is a json line has key/wav/txt
Returns:
Iterable[{key, wav, txt, sample_rate}]
"""
for sample in data:
assert 'src' in sample
json_line = sample['src']
obj = json.loads(json_line)
assert 'key' in obj
assert 'wav' in obj
assert 'txt' in obj
key = obj['key']
wav_file = obj['wav']
txt = obj['txt']
try:
if 'start' in obj:
assert 'end' in obj
sample_rate = torchaudio.info(wav_file).sample_rate
start_frame = int(obj['start'] * sample_rate)
end_frame = int(obj['end'] * sample_rate)
waveform, _ = torchaudio.load(filepath=wav_file,
num_frames=end_frame -
start_frame,
frame_offset=start_frame)
else:
waveform, sample_rate = torchaudio.load(wav_file)
# 检查音频的维度
num_channels = waveform.shape[0]
# 如果音频是多通道的,则进行通道平均
if num_channels > 1:
waveform = torch.mean(waveform, dim=0, keepdim=True)
example = copy.deepcopy(obj) # copy and keep all the fields
example['wav'] = waveform # overwrite wav
example['sample_rate'] = sample_rate
yield example
except Exception as ex:
logging.warning('Failed to read {}'.format(wav_file))
def parse_speaker(data, speaker_table_path):
speaker_dict = {}
with open(speaker_table_path, 'r', encoding='utf8') as fin:
for line in fin:
arr = line.strip().split()
speaker_dict[arr[0]] = int(arr[1])
for sample in data:
assert 'speaker' in sample
speaker = sample['speaker']
sample['speaker'] = speaker_dict.get(speaker, 0)
yield sample
def filter(data,
max_length=1200,
min_length=10,
token_max_length=250,
token_min_length=1,
min_output_input_ratio=0.00005,
max_output_input_ratio=1,
filter_no_extra_info: bool = False,
max_seq_len=1000):
""" Filter sample according to feature and label length
Inplace operation.
Args::
data: Iterable[{key, wav, label, sample_rate}]
max_length: drop utterance which is greater than max_length(10ms)
min_length: drop utterance which is less than min_length(10ms)
token_max_length: drop utterance which is greater than
token_max_length, especially when use char unit for
english modeling
token_min_length: drop utterance which is
less than token_max_length
min_output_input_ratio: minimal ration of
token_length / feats_length(10ms)
max_output_input_ratio: maximum ration of
token_length / feats_length(10ms)
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
try:
assert 'sample_rate' in sample
assert 'wav' in sample
assert 'label' in sample
except:
continue
# sample['wav'] is torch.Tensor, we have 100 frames every second
num_frames = sample['wav'].size(1) / sample['sample_rate'] * 100
# filter for shard_in_common
if filter_no_extra_info:
if 'lang' not in sample:
continue
if 'task' not in sample:
continue
if num_frames < min_length:
continue
# if "output_type" in sample and sample["output_type"] == "speech2text_token":
# max_length = int(max_length / 2)
# if "output_type" in sample and sample["output_type"] == "text2token":
# max_length = int(max_length / 1.5)
if num_frames > max_length:
# continue
if 'task' in sample and sample['task'] == '<CAPTION>':
# utils_file.logging_limit_print('进行了随机剪裁')
# 随机选择一个起始点进行裁剪
start_frame = random.randint(0, int(num_frames - max_length))
end_frame = start_frame + max_length
sample['wav'] = sample['wav'][:, int(start_frame / 100 * sample['sample_rate']): int(
end_frame / 100 * sample['sample_rate'])]
# print('sample[', sample['wav'].shape)
else:
continue
if len(sample['label']) < token_min_length:
continue
if len(sample['label']) > token_max_length:
continue
# if num_frames != 0:
# if len(sample['label']) / num_frames < min_output_input_ratio:
# continue
# if len(sample['label']) / num_frames > max_output_input_ratio:
# continue
if sample["output_type"] == "speech2text_token":
seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label']) + len(sample['speech_token'])
elif sample["output_type"] == "text2token":
seq_len = len(sample['prompt']) + len(sample['label']) + len(sample['speech_token'])
else:
seq_len = len(sample['prompt']) + num_frames / 8 + len(sample['label'])
utils_file.logging_limit_print(f'seqlen: {seq_len}, output_type:{sample["output_type"]},len(sample["prompt"]):{len(sample["prompt"])},num_frames / 8:{num_frames / 8},len(sample["label"]):{len(sample["label"])},len(sample["speech_token"]):{len(sample["speech_token"])} ')
if max_seq_len > 0 and max_seq_len < seq_len:
utils_file.logging_limit_print(f"seqlen: {seq_len} 超过了最大长度:{max_seq_len},contiune")
continue
yield sample
def resample(data, resample_rate=16000):
""" Resample data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
resample_rate: target resample rate
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
if sample_rate != resample_rate:
sample['sample_rate'] = resample_rate
sample['wav'] = torchaudio.transforms.Resample(
orig_freq=sample_rate, new_freq=resample_rate)(waveform)
yield sample
def speed_perturb(data, speeds=None):
""" Apply speed perturb to the data.
Inplace operation.
Args:
data: Iterable[{key, wav, label, sample_rate}]
speeds(List[float]): optional speed
Returns:
Iterable[{key, wav, label, sample_rate}]
"""
if speeds is None:
speeds = [0.9, 1.0, 1.1]
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
speed = random.choice(speeds)
if speed != 1.0:
wav, _ = torchaudio.sox_effects.apply_effects_tensor(
waveform, sample_rate,
[['speed', str(speed)], ['rate', str(sample_rate)]])
sample['wav'] = wav
yield sample
def compute_fbank(data,
num_mel_bins=23,
frame_length=25,
frame_shift=10,
dither=0.0):
""" Extract fbank
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
assert 'key' in sample
assert 'label' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.fbank(waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
energy_floor=0.0,
sample_frequency=sample_rate)
sample['feat'] = mat
yield sample
def compute_mfcc(data,
num_mel_bins=23,
frame_length=25,
frame_shift=10,
dither=0.0,
num_ceps=40,
high_freq=0.0,
low_freq=20.0):
""" Extract mfcc
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
assert 'key' in sample
assert 'label' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav']
waveform = waveform * (1 << 15)
# Only keep key, feat, label
mat = kaldi.mfcc(waveform,
num_mel_bins=num_mel_bins,
frame_length=frame_length,
frame_shift=frame_shift,
dither=dither,
num_ceps=num_ceps,
high_freq=high_freq,
low_freq=low_freq,
sample_frequency=sample_rate)
sample['feat'] = mat
yield sample
def compute_log_mel_spectrogram(data,
n_fft=400,
hop_length=160,
num_mel_bins=80,
padding=0):
""" Extract log mel spectrogram, modified from openai-whisper, see:
- https://github.com/openai/whisper/blob/main/whisper/audio.py
- https://github.com/wenet-e2e/wenet/pull/2141#issuecomment-1811765040
Args:
data: Iterable[{key, wav, label, sample_rate}]
Returns:
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'sample_rate' in sample
assert 'wav' in sample
assert 'key' in sample
assert 'label' in sample
sample_rate = sample['sample_rate']
waveform = sample['wav'].squeeze(0) # (channel=1, sample) -> (sample,)
# print(f'wavform shape: {waveform.shape}')
if padding > 0:
waveform = F.pad(waveform, (0, padding))
window = torch.hann_window(n_fft)
stft = torch.stft(waveform,
n_fft,
hop_length,
window=window,
return_complex=True)
magnitudes = stft[..., :-1].abs() ** 2
filters = torch.from_numpy(
librosa.filters.mel(sr=sample_rate,
n_fft=n_fft,
n_mels=num_mel_bins))
mel_spec = filters @ magnitudes
# NOTE(xcsong): https://github.com/openai/whisper/discussions/269
log_spec = torch.clamp(mel_spec, min=1e-10).log10()
log_spec = torch.maximum(log_spec, log_spec.max() - 8.0)
log_spec = (log_spec + 4.0) / 4.0
sample['feat'] = log_spec.transpose(0, 1)
yield sample
import re
def process_text(text):
# 1. 删除汉字左右两侧的空格
text = re.sub(r'\s*([\u4e00-\u9fff])\s*', r'\1', text)
# 2. 将英文转成小写
text = text.lower()
# 3. 删除 < 和 > 符号两侧的空格
text = re.sub(r'\s*<\s*', '<', text)
text = re.sub(r'\s*>\s*', '>', text)
return text
global_style_dict = {
"朗读": "新闻科普",
"科普百科": "新闻科普",
"悬疑恐怖": "恐怖故事",
"童话故事": "童话故事",
"客服": "客服",
"诗歌": "诗歌散文",
"散文": "诗歌散文",
"武侠评书": "有声书",
"小说": "有声书",
"历史": "有声书",
"科幻": "有声书",
"对话": "日常口语",
"口语": "日常口语",
"幽默": "其他",
"其他": "其他",
}
def replace_keys_in_brackets(input_str, key_value_dict):
for key, value in key_value_dict.items():
# 构造匹配 <key> 形式的正则表达式模式
pattern = re.compile(r'<{}>'.format(key))
input_str = pattern.sub(f"<{value}>", input_str)
return input_str
def tokenize(data, tokenizer: BaseTokenizer, global_prompt_dict=None):
""" Decode text to chars or BPE
Inplace operation
Args:
data: Iterable[{key, wav, txt, sample_rate}]
Returns:
Iterable[{key, wav, txt, tokens, label, sample_rate}]
"""
for sample in data:
try:
assert 'txt' in sample
except:
print(f'tokenize: {sample}')
exit()
if 'task' in sample:
task_name = sample['task']
# if "<AGE>" in task_name:
# txt = sample['txt'].replace("<YOUTH>", "<ADULT>").replace("<MIDDLE_AGE>", "<ADULT>").replace("<MIDDLE>", "<ADULT>")
if "<STYLE>" in sample['task']:
txt = replace_keys_in_brackets(sample['txt'], global_style_dict)
else:
txt = sample['txt']
else:
txt = sample['txt']
tokens, label = tokenizer.tokenize(process_text(txt))
sample['tokens'] = tokens # token是字符, label是数字
sample['label'] = label + [tokenizer.eod_id]
if 'task' in sample:
task_name = sample['task']
try:
random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1)
prompt = global_prompt_dict[task_name][random_index]
sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels
except:
pass
else:
task_name = '<TRANSCRIBE>'
try:
random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1)
prompt = global_prompt_dict[task_name][random_index]
sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels
except:
pass
if 'speech_token' in sample:
old_task_name = sample['task']
if old_task_name == "<TRANSCRIBE>":
task_name = '<TEXT2SPEECH_TOKEN>'
sample['output_type'] = 'text2token'
elif old_task_name == "<S2TCHAT>":
task_name = '<SPEECH2TEXT_SPEECH_TOKEN>'
sample['output_type'] = 'speech2text_token'
else:
task_name = old_task_name
try:
random_index = random.randint(0, len(global_prompt_dict[task_name]) - 1)
prompt = global_prompt_dict[task_name][random_index]
sample['prompt'] = tokenizer.tokenize(prompt)[1] # labels
except:
pass
# 报错修改 from sywang ,只有推理的时候才会需要(raw格式),tar格式会自动转int list
# try:
# utils_file.logging_limit_print("type of sample['speech_token']: ", type(sample['speech_token']))
# speech_tokens = ast.literal_eval(sample['speech_token']) # 解析字符串为列表
# except (ValueError, SyntaxError) as e:
# print(f"解析错误: {e}在{speech_tokens}")
# speech_tokens = []
# speech_token = [int(x) for x in speech_tokens]
speech_token = [int(x) for x in sample['speech_token']]
sample['speech_token'] = speech_token + [4096]
else:
sample['output_type'] = 'text'
sample['speech_token'] = [4096]
yield sample
def spec_aug(data, num_t_mask=2, num_f_mask=2, max_t=50, max_f=10, max_w=80):
""" Do spec augmentation
Inplace operation
Args:
data: Iterable[{key, feat, label}]
num_t_mask: number of time mask to apply
num_f_mask: number of freq mask to apply
max_t: max width of time mask
max_f: max width of freq mask
max_w: max width of time warp
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'feat' in sample
x = sample['feat']
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
max_freq = y.size(1)
# time mask
for i in range(num_t_mask):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
y[start:end, :] = 0
# freq mask
for i in range(num_f_mask):
start = random.randint(0, max_freq - 1)
length = random.randint(1, max_f)
end = min(max_freq, start + length)
y[:, start:end] = 0
sample['feat'] = y
yield sample
def spec_sub(data, max_t=20, num_t_sub=3):
""" Do spec substitute
Inplace operation
ref: U2++, section 3.2.3 [https://arxiv.org/abs/2106.05642]
Args:
data: Iterable[{key, feat, label}]
max_t: max width of time substitute
num_t_sub: number of time substitute to apply
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'feat' in sample
x = sample['feat']
assert isinstance(x, torch.Tensor)
y = x.clone().detach()
max_frames = y.size(0)
for i in range(num_t_sub):
start = random.randint(0, max_frames - 1)
length = random.randint(1, max_t)
end = min(max_frames, start + length)
# only substitute the earlier time chosen randomly for current time
pos = random.randint(0, start)
y[start:end, :] = x[start - pos:end - pos, :]
sample['feat'] = y
yield sample
def spec_trim(data, max_t=20):
""" Trim tailing frames. Inplace operation.
ref: TrimTail [https://arxiv.org/abs/2211.00522]
Args:
data: Iterable[{key, feat, label}]
max_t: max width of length trimming
Returns
Iterable[{key, feat, label}]
"""
for sample in data:
assert 'feat' in sample
x = sample['feat']
assert isinstance(x, torch.Tensor)
max_frames = x.size(0)
length = random.randint(1, max_t)
if length < max_frames / 2:
y = x.clone().detach()[:max_frames - length]
sample['feat'] = y
yield sample
def shuffle(data, shuffle_size=10000):
""" Local shuffle the data
Args:
data: Iterable[{key, feat, label}]
shuffle_size: buffer size for shuffle
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= shuffle_size:
random.shuffle(buf)
for x in buf:
yield x
buf = []
# The sample left over
random.shuffle(buf)
for x in buf:
yield x
def sort(data, sort_size=500):
""" Sort the data by feature length.
Sort is used after shuffle and before batch, so we can group
utts with similar lengths into a batch, and `sort_size` should
be less than `shuffle_size`
Args:
data: Iterable[{key, feat, label}]
sort_size: buffer size for sort
Returns:
Iterable[{key, feat, label}]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= sort_size:
buf.sort(key=lambda x: x['feat'].size(0))
for x in buf:
yield x
buf = []
# The sample left over
buf.sort(key=lambda x: x['feat'].size(0))
for x in buf:
yield x
def static_batch(data, batch_size=16):
""" Static batch the data by `batch_size`
Args:
data: Iterable[{key, feat, label}]
batch_size: batch size
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
for sample in data:
buf.append(sample)
if len(buf) >= batch_size:
yield buf
buf = []
if len(buf) > 0:
yield buf
def dynamic_batch(data, max_frames_in_batch=12000, max_seq_in_batch=10000000):
""" Dynamic batch the data until the total frames in batch
reach `max_frames_in_batch`
Args:
data: Iterable[{key, feat, label}]
max_frames_in_batch: max_frames in one batch
Returns:
Iterable[List[{key, feat, label}]]
"""
buf = []
longest_frames = 0
longest_seq = 0
max_frames_in_batch = max_frames_in_batch
buf_speech_token = []
longest_frames_token = 0
longest_seq_token = 0
max_frames_in_batch_token = int(max_frames_in_batch)
buf_speech_token_with_text = []
longest_frames_token_with_text = 0
longest_seq_token_with_text = 0
max_frames_in_batch_token_with_text = int(max_frames_in_batch / 2.5)
for sample in data:
assert 'feat' in sample
assert isinstance(sample['feat'], torch.Tensor)
new_sample_frames = sample['feat'].size(0)
if "output_type" in sample and sample["output_type"] == "speech2text_token":
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', [])) + len(
sample.get('speech_token', []))
longest_seq_token = max(longest_seq_token, new_seq)
utils_file.logging_limit_print(
f'batchf fuc,当前条目new_seq为: {new_seq},longest_seq_token为: {longest_seq_token}')
longest_frames_token = max(longest_frames_token, new_sample_frames)
frames_after_padding_token = longest_frames_token * (len(buf_speech_token)+1)
seq_after_padding_token = longest_seq_token * (len(buf_speech_token)+1)
utils_file.logging_limit_print(
f'batchf fuc,当前条目new_seq为: {new_seq},longest_seq_token为: {longest_seq_token},seq_after_padding_token: {seq_after_padding_token}')
utils_file.logging_limit_print(
f'batchf fuc,当前条目 new_sample_frames 为: {new_sample_frames},longest_frames_token: {longest_frames_token},frames_after_padding_token: {frames_after_padding_token}')
if frames_after_padding_token > max_frames_in_batch_token or seq_after_padding_token > max_seq_in_batch:
yield buf_speech_token
buf_speech_token = [sample]
longest_frames_token = new_sample_frames
longest_seq_token = new_seq
else:
buf_speech_token.append(sample)
elif "output_type" in sample and sample["output_type"] == "text2token":
new_seq = len(sample['label']) + len(sample.get('prompt', [])) + len(
sample.get('speech_token', []))
longest_seq_token_with_text = max(longest_seq_token_with_text, new_seq)
longest_frames_token_with_text = max(longest_frames_token_with_text, new_sample_frames)
frames_after_padding_token_with_text = longest_frames_token_with_text * (len(buf_speech_token_with_text)+1)
seq_after_padding_token_with_text = longest_seq_token_with_text * (len(buf_speech_token_with_text)+1)
if frames_after_padding_token_with_text > max_frames_in_batch_token_with_text or seq_after_padding_token_with_text > max_seq_in_batch:
yield buf_speech_token_with_text
buf_speech_token_with_text = [sample]
longest_frames_token_with_text = new_sample_frames
longest_seq_token_with_text = new_seq
else:
buf_speech_token_with_text.append(sample)
else:
new_seq = sample['feat'].size(0) / 8 + len(sample['label']) + len(sample.get('prompt', []))
longest_seq = max(longest_seq, new_seq)
longest_frames = max(longest_frames, new_sample_frames)
frames_after_padding = longest_frames * (len(buf)+1)
seq_after_padding = longest_seq * (len(buf)+1)
if frames_after_padding > max_frames_in_batch or seq_after_padding > max_seq_in_batch:
yield buf
buf = [sample]
longest_frames = new_sample_frames
longest_seq = new_seq
else:
buf.append(sample)
if len(buf) > 0:
yield buf
def batch(data, batch_type='static', batch_size=16, max_frames_in_batch=12000, max_seq_in_batch=10000000):
""" Wrapper for static/dynamic batch
"""
if batch_type == 'static':
return static_batch(data, batch_size)
elif batch_type == 'dynamic':
return dynamic_batch(data, max_frames_in_batch, max_seq_in_batch=max_seq_in_batch)
else:
logging.fatal('Unsupported batch type {}'.format(batch_type))
def padding(data):
""" Padding the data into training data
Args:
data: Iterable[List[{key, feat, label}]]
Returns:
Iterable[Tuple(keys, feats, labels, feats lengths, label lengths)]
"""
for sample in data:
assert isinstance(sample, list)
feats_length = torch.tensor([x['feat'].size(0) for x in sample],
dtype=torch.int32)
order = torch.argsort(feats_length, descending=True)
feats_lengths = torch.tensor(
[sample[i]['feat'].size(0) for i in order], dtype=torch.int32)
sorted_feats = [sample[i]['feat'] for i in order]
sorted_keys = [sample[i]['key'] for i in order]
sorted_labels = [
torch.tensor(sample[i]['label'], dtype=torch.int64) for i in order
]
sorted_speech_tokens = [
torch.tensor(sample[i]['speech_token'], dtype=torch.int64) for i in order
]
sorted_wavs = [sample[i]['wav'].squeeze(0) for i in order]
label_lengths = torch.tensor([x.size(0) for x in sorted_labels],
dtype=torch.int32)
speech_token_lengths = torch.tensor([x.size(0) for x in sorted_speech_tokens],
dtype=torch.int32)
wav_lengths = torch.tensor([x.size(0) for x in sorted_wavs],
dtype=torch.int32)
# print('------------------')
# for feat_item in sorted_feats:
# print(feat_item.shape)
# print('------------------')
padded_feats = pad_sequence(sorted_feats,
batch_first=True,
padding_value=0)
padding_labels = pad_sequence(sorted_labels,
batch_first=True,
padding_value=-100)
padding_speech_tokens = pad_sequence(sorted_speech_tokens,
batch_first=True,
padding_value=-100)
padded_wavs = pad_sequence(sorted_wavs,
batch_first=True,
padding_value=0)
sorted_lang = [
sample[i].get('lang', 'cn') for i in order
]
sorted_speaker = [
sample[i].get('speaker', 'None') for i in order
]
sorted_emotion = [
sample[i].get('emotion', 'None') for i in order
]
sorted_gender = [
sample[i].get('gender', 'None') for i in order
]
# sorted_duration = [
# sample[i]['duration'] for i in order
# ]
sorted_task = [
sample[i].get('task', '<TRANSCRIBE>') for i in order
]
batch = {
"keys": sorted_keys,
"feats": padded_feats,
"target": padding_labels,
"feats_lengths": feats_lengths,
"target_lengths": label_lengths,
"pcm": padded_wavs,
"pcm_length": wav_lengths,
"speech_tokens": padding_speech_tokens,
"speech_tokens_length": speech_token_lengths,
"lang": sorted_lang,
"speaker": sorted_speaker,
"emotion": sorted_emotion,
"gender": sorted_gender,
"task": sorted_task
}
if 'prompt' in sample[0]:
sorted_prompts = [
torch.tensor(sample[i]['prompt'], dtype=torch.int64
) for i in order
]
prompt_lengths = torch.tensor([x.size(0) for x in
sorted_prompts], dtype=torch.int32)
padding_prompts = pad_sequence(sorted_prompts,
batch_first=True,
padding_value=-1)
batch['prompt'] = padding_prompts
batch['prompt_lengths'] = prompt_lengths
if 'output_type' in sample[0] and sample[0]['output_type'] == 'speech2text_token':
batch['output_type'] = 'speech2text_token'
elif 'output_type' in sample[0] and sample[0]['output_type'] == 'text2token':
batch['output_type'] = 'text2token'
else:
batch['output_type'] = 'text'
yield batch