Spaces:
Running
on
Zero
Running
on
Zero
from typing import Optional | |
import torch | |
from torch import nn | |
from wenet.utils.class_utils import WENET_ACTIVATION_CLASSES | |
class TransducerJoint(torch.nn.Module): | |
def __init__(self, | |
vocab_size: int, | |
enc_output_size: int, | |
pred_output_size: int, | |
join_dim: int, | |
prejoin_linear: bool = True, | |
postjoin_linear: bool = False, | |
joint_mode: str = 'add', | |
activation: str = "tanh", | |
hat_joint: bool = False, | |
dropout_rate: float = 0.1, | |
hat_activation: str = 'tanh'): | |
# TODO(Mddct): concat in future | |
assert joint_mode in ['add'] | |
super().__init__() | |
self.activatoin = WENET_ACTIVATION_CLASSES[activation]() | |
self.prejoin_linear = prejoin_linear | |
self.postjoin_linear = postjoin_linear | |
self.joint_mode = joint_mode | |
if not self.prejoin_linear and not self.postjoin_linear: | |
assert enc_output_size == pred_output_size == join_dim | |
# torchscript compatibility | |
self.enc_ffn: Optional[nn.Linear] = None | |
self.pred_ffn: Optional[nn.Linear] = None | |
if self.prejoin_linear: | |
self.enc_ffn = nn.Linear(enc_output_size, join_dim) | |
self.pred_ffn = nn.Linear(pred_output_size, join_dim) | |
# torchscript compatibility | |
self.post_ffn: Optional[nn.Linear] = None | |
if self.postjoin_linear: | |
self.post_ffn = nn.Linear(join_dim, join_dim) | |
# NOTE: <blank> in vocab_size | |
self.hat_joint = hat_joint | |
self.vocab_size = vocab_size | |
self.ffn_out: Optional[torch.nn.Linear] = None | |
if not self.hat_joint: | |
self.ffn_out = nn.Linear(join_dim, vocab_size) | |
self.blank_pred: Optional[torch.nn.Module] = None | |
self.token_pred: Optional[torch.nn.Module] = None | |
if self.hat_joint: | |
self.blank_pred = torch.nn.Sequential( | |
torch.nn.Tanh(), torch.nn.Dropout(dropout_rate), | |
torch.nn.Linear(join_dim, 1), torch.nn.LogSigmoid()) | |
self.token_pred = torch.nn.Sequential( | |
WENET_ACTIVATION_CLASSES[hat_activation](), | |
torch.nn.Dropout(dropout_rate), | |
torch.nn.Linear(join_dim, self.vocab_size - 1)) | |
def forward(self, | |
enc_out: torch.Tensor, | |
pred_out: torch.Tensor, | |
pre_project: bool = True) -> torch.Tensor: | |
""" | |
Args: | |
enc_out (torch.Tensor): [B, T, E] | |
pred_out (torch.Tensor): [B, T, P] | |
Return: | |
[B,T,U,V] | |
""" | |
if (pre_project and self.prejoin_linear and self.enc_ffn is not None | |
and self.pred_ffn is not None): | |
enc_out = self.enc_ffn(enc_out) # [B,T,E] -> [B,T,D] | |
pred_out = self.pred_ffn(pred_out) | |
if enc_out.ndim != 4: | |
enc_out = enc_out.unsqueeze(2) # [B,T,D] -> [B,T,1,D] | |
if pred_out.ndim != 4: | |
pred_out = pred_out.unsqueeze(1) # [B,U,D] -> [B,1,U,D] | |
# TODO(Mddct): concat joint | |
_ = self.joint_mode | |
out = enc_out + pred_out # [B,T,U,V] | |
if self.postjoin_linear and self.post_ffn is not None: | |
out = self.post_ffn(out) | |
if not self.hat_joint and self.ffn_out is not None: | |
out = self.activatoin(out) | |
out = self.ffn_out(out) | |
return out | |
else: | |
assert self.blank_pred is not None | |
assert self.token_pred is not None | |
blank_logp = self.blank_pred(out) # [B,T,U,1] | |
# scale blank logp | |
scale_logp = torch.clamp(1 - torch.exp(blank_logp), min=1e-6) | |
label_logp = self.token_pred(out).log_softmax( | |
dim=-1) # [B,T,U,vocab-1] | |
# scale token logp | |
label_logp = torch.log(scale_logp) + label_logp | |
out = torch.cat((blank_logp, label_logp), dim=-1) # [B,T,U,vocab] | |
return out | |