Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2019 Shigeki Karita | |
# 2020 Mobvoi Inc (Binbin Zhang) | |
# 2022 Xingchen Song ([email protected]) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Multi-Head Attention layer definition.""" | |
import math | |
from typing import Optional, Tuple | |
import torch | |
from torch import nn | |
from wenet.utils.rope_utils import WENET_APPLY_ROTARY_EMB | |
T_CACHE = Tuple[torch.Tensor, torch.Tensor] | |
class MultiHeadedAttention(nn.Module): | |
"""Multi-Head Attention layer. | |
if n_kv_head != None and n_kv_head != n_head | |
see: https://arxiv.org/pdf/1911.02150.pdf | |
https://arxiv.org/pdf/2305.13245.pdf | |
Example: | |
case 1: n_kv_head == None, head_dim == None, MultiHead attention (MHSA) | |
case 2: n_kv_head=1, n_head = 16, MultiQuery attention (MQA) | |
case 3: nv_kv_head=2, n_head = 16, GroupedQuery attention (GQA) | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
query_bias: bool = True, | |
key_bias: bool = True, | |
value_bias: bool = True, | |
use_sdpa: bool = False, | |
n_kv_head: Optional[int] = None, | |
head_dim: Optional[int] = None): | |
"""Construct an MultiHeadedAttention object.""" | |
super().__init__() | |
self.inner_dim = n_feat if head_dim is None else head_dim * n_head | |
if n_kv_head is not None: | |
assert head_dim is not None | |
self.inner_kv_dim = head_dim * n_kv_head | |
n_kv_head = n_kv_head | |
else: | |
self.inner_kv_dim = self.inner_dim | |
n_kv_head = n_head | |
# We assume d_v always equals d_k | |
self.d_k = self.inner_dim // n_head | |
assert self.d_k == self.inner_kv_dim // n_kv_head | |
self.h = n_head | |
self.h_kv = n_kv_head | |
self.linear_q = nn.Linear(n_feat, self.inner_dim, bias=query_bias) | |
self.linear_k = nn.Linear(n_feat, self.inner_kv_dim, bias=key_bias) | |
self.linear_v = nn.Linear(n_feat, self.inner_kv_dim, bias=value_bias) | |
self.linear_out = nn.Linear(self.inner_dim, n_feat, bias=query_bias) | |
self.dropout = nn.Dropout(p=dropout_rate) | |
self.use_sdpa = use_sdpa | |
self.dropout_rate = dropout_rate | |
def _forward_linearx(self, | |
name: str, | |
x: torch.Tensor, | |
head_first: bool = True) -> torch.Tensor: | |
assert x.ndim >= 3 | |
if name == 'query': | |
x = self.linear_q(x) | |
x_shape = x.size() | |
x_shape = x_shape[:-1] + torch.Size([self.h, self.d_k]) | |
elif name == 'key': | |
x = self.linear_k(x) | |
x_shape = x.size() | |
x_shape = x_shape[:-1] + torch.Size([self.h_kv, self.d_k]) | |
else: | |
assert name == 'value' | |
x = self.linear_v(x) | |
x_shape = x.size() | |
x_shape = x_shape[:-1] + torch.Size([self.h_kv, self.d_k]) | |
# split last dim | |
x = x.view(x_shape) | |
if head_first: | |
x = x.transpose(-3, | |
-2) # (batch, ..., head or head_kv, time, d_k) | |
return x | |
def forward_qkv( | |
self, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor | |
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: | |
"""Transform query, key and value. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, ..., time1, size). | |
key (torch.Tensor): Key tensor (#batch, ..., time2, size). | |
value (torch.Tensor): Value tensor (#batch, ..., time2, size). | |
Returns: | |
torch.Tensor: Transformed query tensor, size | |
(#batch, ..., n_head, time1, d_k). | |
torch.Tensor: Transformed key tensor, size | |
(#batch, ..., n_head_kv, time2, d_k). | |
torch.Tensor: Transformed value tensor, size | |
(#batch, ..., n_head_kv, time2, d_k). | |
""" | |
q = self._forward_linearx('query', query) | |
k = self._forward_linearx('key', key) | |
v = self._forward_linearx('value', value) | |
return q, k, v | |
def forward_attention( | |
self, | |
value: torch.Tensor, | |
scores: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool) | |
) -> torch.Tensor: | |
"""Compute attention context vector. | |
Args: | |
value (torch.Tensor): Transformed value, size | |
(#batch, ..., n_head, time2, d_k). | |
scores (torch.Tensor): Attention score, size | |
(#batch, ..., n_head, time1, time2). | |
mask (torch.Tensor): Mask, size (#batch, 1, time2) or | |
(#batch, ..., time1, time2), (0, ..., 0, 0) means fake mask. | |
Returns: | |
torch.Tensor: Transformed value (#batch, time1, d_model) | |
weighted by the attention score (#batch, time1, time2). | |
""" | |
# NOTE(xcsong): When will `if mask.size(2) > 0` be True? | |
# 1. onnx(16/4) [WHY? Because we feed real cache & real mask for the | |
# 1st chunk to ease the onnx export.] | |
# 2. pytorch training | |
if mask.size(-1) > 0: # time2 > 0 | |
mask = mask.unsqueeze(-3).eq(0) # (batch, .., 1, *, time2) | |
# For last chunk, time2 might be larger than scores.size(-1) | |
mask = mask[..., :scores.size(-1)] # (batch, 1, *, time2) | |
scores = scores.masked_fill(mask, -float('inf')) | |
attn = torch.softmax(scores.float(), | |
dim=-1).type_as(value).masked_fill( | |
mask, 0.0) # (batch, head, time1, time2) | |
# NOTE(xcsong): When will `if mask.size(2) > 0` be False? | |
# 1. onnx(16/-1, -1/-1, 16/0) | |
# 2. jit (16/-1, -1/-1, 16/0, 16/4) | |
else: | |
attn = torch.softmax(scores.float(), dim=-1).type_as( | |
value) # (batch, ..., head, time1, time2) | |
p_attn = self.dropout(attn) | |
x = torch.matmul(p_attn, value) # (batch, ..., head, time1, d_k) | |
x = x.transpose(-3, -2).contiguous() # [batch, ..., time1, head, d_k] | |
x_shape = x.size()[:-2] + torch.Size([self.h * self.d_k]) | |
x = x.view(x_shape) # (batch, ..., time1, d_model) | |
return self.linear_out(x) # (batch, ..., time1, d_model) | |
def _update_kv_and_cache( | |
self, | |
k: torch.Tensor, | |
v: torch.Tensor, | |
cache: T_CACHE, | |
head_first: bool = True | |
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE]: | |
new_cache = cache | |
seq_axis = -2 if head_first else -3 | |
head_axis = -3 if head_first else -2 | |
if not self.training: | |
# NOTE(xcsong): | |
# when export onnx model, for 1st chunk, we feed | |
# cache(1, head, 0, d_k * 2) (16/-1, -1/-1, 16/0 mode) | |
# or cache(1, head, real_cache_t, d_k * 2) (16/4 mode). | |
# In all modes, `if cache.size(0) > 0` will alwayse be `True` | |
# and we will always do splitting and | |
# concatnation(this will simplify onnx export). Note that | |
# it's OK to concat & split zero-shaped tensors(see code below). | |
# when export jit model, for 1st chunk, we always feed | |
# cache(0, 0, 0, 0) since jit supports dynamic if-branch. | |
# >>> a = torch.ones((1, 2, 0, 4)) | |
# >>> b = torch.ones((1, 2, 3, 4)) | |
# >>> c = torch.cat((a, b), dim=2) | |
# >>> torch.equal(b, c) # True | |
# >>> d = torch.split(a, 2, dim=-1) | |
# >>> torch.equal(d[0], d[1]) # True | |
key_cache, value_cache = cache | |
if key_cache.size(0) > 0: | |
k = torch.cat([key_cache, k], dim=seq_axis) | |
if value_cache.size(0) > 0: | |
v = torch.cat([value_cache, v], dim=seq_axis) | |
# NOTE(xcsong): We do cache slicing in encoder.forward_chunk, since it's | |
# non-trivial to calculate `next_cache_start` here. | |
# new_cache = torch.cat((k, v), dim=-1) if not self.training else cache | |
new_cache = (k, v) | |
# for multi query or multi group attention | |
if self.h_kv != self.h and self.h_kv != 1: | |
# NOTE: onnxruntime issues: | |
# https://github.com/wenet-e2e/wenet/issues/2517 | |
# k = torch.repeat_interleave( | |
# k, | |
# self.h // self.h_kv, | |
# dim=-3, | |
# ) | |
# v = torch.repeat_interleave( | |
# v, | |
# self.h // self.h_kv, | |
# dim=-3, | |
# ) | |
n_repeat = self.h // self.h_kv | |
k_shape = k.size() | |
repeat_axis = head_axis + 1 | |
k = k.unsqueeze(head_axis).expand( | |
k_shape[:repeat_axis] + torch.Size([n_repeat]) + | |
k_shape[repeat_axis:]).reshape( | |
k_shape[:head_axis] + torch.Size([self.h_kv * n_repeat]) + | |
k_shape[repeat_axis:]) | |
v_shape = v.size() | |
v = v.unsqueeze(head_axis).expand( | |
v_shape[:repeat_axis] + torch.Size([n_repeat]) + | |
v_shape[(repeat_axis):]).reshape( | |
v_shape[:head_axis] + torch.Size([self.h_kv * n_repeat]) + | |
v_shape[repeat_axis:]) | |
return k, v, new_cache | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: T_CACHE = (torch.zeros(0, 0, 0, 0), torch.zeros(0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, T_CACHE]: | |
"""Compute scaled dot product attention. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2). | |
1.When applying cross attention between decoder and encoder, | |
the batch padding mask for input is in (#batch, 1, T) shape. | |
2.When applying self attention of encoder, | |
the mask is in (#batch, T, T) shape. | |
3.When applying self attention of decoder, | |
the mask is in (#batch, L, L) shape. | |
4.If the different position in decoder see different block | |
of the encoder, such as Mocha, the passed in mask could be | |
in (#batch, L, T) shape. But there is no such case in current | |
Wenet. | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
k, v, new_cache = self._update_kv_and_cache(k, v, cache) | |
if not self.use_sdpa: | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
return self.forward_attention(v, scores, mask), new_cache | |
else: | |
output = torch.nn.functional.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask.unsqueeze(1), | |
dropout_p=self.dropout_rate, | |
scale=1 / math.sqrt(self.d_k), | |
) | |
output = (output.transpose(1, 2).contiguous().view( | |
query.size(0), -1, | |
self.h * self.d_k)) # (batch, time1, d_model) | |
return self.linear_out(output), new_cache | |
class RelPositionMultiHeadedAttention(MultiHeadedAttention): | |
"""Multi-Head Attention layer with relative position encoding. | |
Paper: https://arxiv.org/abs/1901.02860 | |
Args: | |
n_head (int): The number of heads. | |
n_feat (int): The number of features. | |
dropout_rate (float): Dropout rate. | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
query_bias: bool = True, | |
key_bias: bool = True, | |
value_bias: bool = True, | |
use_sdpa: bool = False, | |
n_kv_head: Optional[int] = None, | |
head_dim: Optional[int] = None): | |
"""Construct an RelPositionMultiHeadedAttention object.""" | |
super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
value_bias, use_sdpa, n_kv_head, head_dim) | |
# linear transformation for positional encoding | |
self.linear_pos = nn.Linear(n_feat, n_feat, bias=False) | |
# these two learnable bias are used in matrix c and matrix d | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
self.pos_bias_u = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
self.pos_bias_v = nn.Parameter(torch.Tensor(self.h, self.d_k)) | |
torch.nn.init.xavier_uniform_(self.pos_bias_u) | |
torch.nn.init.xavier_uniform_(self.pos_bias_v) | |
def rel_shift(self, x, zero_triu: bool = False): | |
"""Compute relative positinal encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, size). | |
zero_triu (bool): If true, return the lower triangular part of | |
the matrix. | |
Returns: | |
torch.Tensor: Output tensor. | |
""" | |
zero_pad = torch.zeros((x.size()[0], x.size()[1], x.size()[2], 1), | |
device=x.device, | |
dtype=x.dtype) | |
x_padded = torch.cat([zero_pad, x], dim=-1) | |
x_padded = x_padded.view(x.size()[0], | |
x.size()[1], | |
x.size(3) + 1, x.size(2)) | |
x = x_padded[:, :, 1:].view_as(x) | |
if zero_triu: | |
ones = torch.ones((x.size(2), x.size(3))) | |
x = x * torch.tril(ones, x.size(3) - x.size(2))[None, None, :, :] | |
return x | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros((0, 0, 0, 0))) | |
) -> Tuple[torch.Tensor, T_CACHE]: | |
"""Compute 'Scaled Dot Product Attention' with rel. positional encoding. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2), (0, 0, 0) means fake mask. | |
pos_emb (torch.Tensor): Positional embedding tensor | |
(#batch, time2, size). | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q, k, v = self.forward_qkv(query, key, value) | |
q = q.transpose(1, 2) # (batch, time1, head, d_k) | |
k, v, new_cache = self._update_kv_and_cache(k, v, cache) | |
n_batch_pos = pos_emb.size(0) | |
p = self.linear_pos(pos_emb).view(n_batch_pos, -1, self.h, self.d_k) | |
p = p.transpose(1, 2) # (batch, head, time1, d_k) | |
# (batch, head, time1, d_k) | |
q_with_bias_u = (q + self.pos_bias_u).transpose(1, 2) | |
# (batch, head, time1, d_k) | |
q_with_bias_v = (q + self.pos_bias_v).transpose(1, 2) | |
# compute matrix b and matrix d | |
# (batch, head, time1, time2) | |
matrix_bd = torch.matmul(q_with_bias_v, p.transpose(-2, -1)) | |
# Remove rel_shift since it is useless in speech recognition, | |
# and it requires special attention for streaming. | |
# matrix_bd = self.rel_shift(matrix_bd) | |
if not self.use_sdpa: | |
# compute attention score | |
# first compute matrix a and matrix c | |
# as described in https://arxiv.org/abs/1901.02860 Section 3.3 | |
# (batch, head, time1, time2) | |
matrix_ac = torch.matmul(q_with_bias_u, k.transpose(-2, -1)) | |
scores = (matrix_ac + matrix_bd) / math.sqrt( | |
self.d_k) # (batch, head, time1, time2) | |
return self.forward_attention(v, scores, mask), new_cache | |
else: | |
# NOTE(Mddct): we need mask bias, not boolean mask | |
assert mask.dtype != torch.bool | |
mask = mask.unsqueeze(1) | |
# matrix_bd as a mask bias | |
mask = (matrix_bd + mask) / math.sqrt(self.d_k) | |
output = torch.nn.functional.scaled_dot_product_attention( | |
q_with_bias_u, | |
k, | |
v, | |
attn_mask=mask, | |
dropout_p=self.dropout_rate, | |
scale=1 / math.sqrt(self.d_k), | |
) | |
output = (output.transpose(1, 2).contiguous().view( | |
query.size(0), -1, | |
self.h * self.d_k)) # (batch, time1, d_model) | |
return self.linear_out(output), new_cache | |
class MultiHeadedCrossAttention(MultiHeadedAttention): | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
query_bias: bool = True, | |
key_bias: bool = True, | |
value_bias: bool = True, | |
use_sdpa: bool = False, | |
n_kv_head: Optional[int] = None, | |
head_dim: Optional[int] = None): | |
super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
value_bias, use_sdpa, n_kv_head, head_dim) | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros((0, 0, 0, 0))) | |
) -> Tuple[torch.Tensor, T_CACHE]: | |
del pos_emb | |
key_cache, value_cache = cache | |
assert key_cache.size(0) == value_cache.size(0) | |
if key_cache.size(0) > 0: | |
assert not self.training | |
q = self._forward_linearx('query', query) | |
k, v = key_cache, value_cache | |
else: | |
q, k, v = self.forward_qkv(query, key, value) | |
new_cache = (k, v) if not self.training else cache | |
# for multi query or multi groups attention | |
if self.h_kv != self.h and self.h_kv != 1: | |
k = torch.repeat_interleave( | |
k, | |
self.h // self.h_kv, | |
dim=-3, | |
) | |
v = torch.repeat_interleave( | |
v, | |
self.h // self.h_kv, | |
dim=-3, | |
) | |
B = query.size(0) | |
Beams = 1 | |
if B != k.size(0): | |
assert not self.training | |
Beams = B // k.size(0) | |
B = k.size(0) | |
q = q.view(B, Beams, q.size(-3), q.size(-2), q.size(-1)) | |
k = k.unsqueeze(1) | |
v = v.unsqueeze(1) | |
mask = mask.unsqueeze(1) | |
if not self.use_sdpa: | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
output = self.forward_attention(v, scores, mask) | |
else: | |
output = torch.nn.functional.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask.unsqueeze(1), | |
dropout_p=self.dropout_rate, | |
scale=1 / math.sqrt(self.d_k), | |
) | |
output = output.transpose(-2, -3).contiguous() | |
output_shape = output.size()[:-2] + torch.Size([self.h * self.d_k]) | |
output = output.view(output_shape) # (batch, ..., time1, d_model) | |
output = self.linear_out(output) | |
if query.size(0) != B: | |
assert not self.training | |
output_shape = torch.Size([B * Beams]) + output.size()[2:] | |
output = output.view(output_shape) | |
return output, new_cache | |
class ShawRelPositionMultiHeadedAttention(MultiHeadedAttention): | |
""" https://arxiv.org/pdf/1803.02155.pdf | |
""" | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
query_bias: bool = True, | |
key_bias: bool = True, | |
value_bias: bool = True, | |
use_sdpa: bool = False, | |
n_kv_head: Optional[int] = None, | |
head_dim: Optional[int] = None): | |
del n_kv_head, head_dim | |
super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
value_bias, use_sdpa, None, None) | |
# TODO(Mddct): 64 8 1 as args | |
self.max_right_rel_pos = 8 | |
self.max_left_rel_pos = 64 | |
self.rel_k_embed = torch.nn.Embedding( | |
self.max_left_rel_pos + self.max_right_rel_pos + 1, self.d_k) | |
def _relative_indices(self, keys: torch.Tensor) -> torch.Tensor: | |
# (S, 1) | |
indices = torch.arange(keys.size(2), device=keys.device).unsqueeze(0) | |
# (S, S) | |
rel_indices = indices - indices.transpose(0, 1) | |
rel_indices = torch.clamp(rel_indices, -self.max_left_rel_pos, | |
self.max_right_rel_pos) | |
return rel_indices + self.max_left_rel_pos | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, T_CACHE]: | |
del pos_emb | |
q, k, v = self.forward_qkv(query, key, value) | |
k, v, new_cache = self._update_kv_and_cache(k, v, cache) | |
rel_k = self.rel_k_embed(self._relative_indices(k)) # (t2, t2, d_k) | |
rel_k = rel_k[-q.size(2):] | |
rel_att_weights = torch.einsum("bhld,lrd->bhlr", q, rel_k) | |
if not self.use_sdpa: | |
scores = (torch.matmul(q, k.transpose(-2, -1)) + | |
rel_att_weights) / math.sqrt(self.d_k) | |
return self.forward_attention(v, scores, mask), new_cache | |
else: | |
# NOTE(Mddct): we need mask bias, not boolean mask | |
assert mask.dtype != torch.bool | |
mask = mask.unsqueeze(1) | |
# matrix_bd as a mask bias | |
mask = (rel_att_weights + mask) / math.sqrt(self.d_k) | |
output = torch.nn.functional.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask, | |
dropout_p=self.dropout_rate, | |
scale=1 / math.sqrt(self.d_k), | |
) | |
output = (output.transpose(1, 2).contiguous().view( | |
query.size(0), -1, | |
self.h * self.d_k)) # (batch, time1, d_model) | |
return self.linear_out(output), new_cache | |
class RopeMultiHeadedAttention(MultiHeadedAttention): | |
def __init__(self, | |
n_head: int, | |
n_feat: int, | |
dropout_rate: float, | |
query_bias: bool = True, | |
key_bias: bool = True, | |
value_bias: bool = True, | |
use_sdpa: bool = False, | |
n_kv_head: Optional[int] = None, | |
head_dim: Optional[int] = None, | |
style='google'): | |
super().__init__(n_head, n_feat, dropout_rate, query_bias, key_bias, | |
value_bias, use_sdpa, n_kv_head, head_dim) | |
self.style = style | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
mask: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
pos_emb: torch.Tensor = torch.empty(0), | |
cache: T_CACHE = (torch.zeros((0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)) | |
) -> Tuple[torch.Tensor, T_CACHE]: | |
"""Compute rope scaled dot product attention. | |
Args: | |
query (torch.Tensor): Query tensor (#batch, time1, size). | |
key (torch.Tensor): Key tensor (#batch, time2, size). | |
value (torch.Tensor): Value tensor (#batch, time2, size). | |
mask (torch.Tensor): Mask tensor (#batch, 1, time2) or | |
(#batch, time1, time2). | |
1.When applying cross attention between decoder and encoder, | |
the batch padding mask for input is in (#batch, 1, T) shape. | |
2.When applying self attention of encoder, | |
the mask is in (#batch, T, T) shape. | |
3.When applying self attention of decoder, | |
the mask is in (#batch, L, L) shape. | |
4.If the different position in decoder see different block | |
of the encoder, such as Mocha, the passed in mask could be | |
in (#batch, L, T) shape. But there is no such case in current | |
Wenet. | |
cache (torch.Tensor): Cache tensor (1, head, cache_t, d_k * 2), | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
Returns: | |
torch.Tensor: Output tensor (#batch, time1, d_model). | |
torch.Tensor: Cache tensor (1, head, cache_t + time1, d_k * 2) | |
where `cache_t == chunk_size * num_decoding_left_chunks` | |
and `head * d_k == size` | |
""" | |
q = self._forward_linearx('query', query, head_first=False) | |
k = self._forward_linearx('key', key, head_first=False) | |
v = self._forward_linearx('value', value, head_first=False) | |
# NOTE(Mddct): In order to make the code easier to read, | |
# these two lines are not placed in MultiHeadedAttention. | |
q = WENET_APPLY_ROTARY_EMB[self.style](q, pos_emb) | |
k = WENET_APPLY_ROTARY_EMB[self.style](k, pos_emb) | |
k, v, new_cache = self._update_kv_and_cache(k, | |
v, | |
cache, | |
head_first=False) | |
q = q.transpose(1, 2) | |
k = k.transpose(1, 2) | |
v = v.transpose(1, 2) | |
if not self.use_sdpa: | |
scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(self.d_k) | |
return self.forward_attention(v, scores, mask), new_cache | |
else: | |
output = torch.nn.functional.scaled_dot_product_attention( | |
q, | |
k, | |
v, | |
attn_mask=mask.unsqueeze(1), | |
dropout_p=self.dropout_rate, | |
scale=1 / math.sqrt(self.d_k), | |
) | |
output = (output.transpose(1, 2).contiguous().view( | |
query.size(0), -1, | |
self.h * self.d_k)) # (batch, time1, d_model) | |
return self.linear_out(output), new_cache | |