Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""Positonal Encoding Module.""" | |
import math | |
from typing import Tuple, Union | |
import torch | |
import torch.nn.functional as F | |
import numpy as np | |
from wenet.utils.rope_utils import precompute_freqs_cis | |
class PositionalEncoding(torch.nn.Module): | |
"""Positional encoding. | |
:param int d_model: embedding dim | |
:param float dropout_rate: dropout rate | |
:param int max_len: maximum input length | |
PE(pos, 2i) = sin(pos/(10000^(2i/dmodel))) | |
PE(pos, 2i+1) = cos(pos/(10000^(2i/dmodel))) | |
""" | |
def __init__(self, | |
d_model: int, | |
dropout_rate: float, | |
max_len: int = 5000, | |
reverse: bool = False): | |
"""Construct an PositionalEncoding object.""" | |
super().__init__() | |
self.d_model = d_model | |
self.xscale = math.sqrt(self.d_model) | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
self.max_len = max_len | |
pe = torch.zeros(self.max_len, self.d_model) | |
position = torch.arange(0, self.max_len, | |
dtype=torch.float32).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, self.d_model, 2, dtype=torch.float32) * | |
-(math.log(10000.0) / self.d_model)) | |
pe[:, 0::2] = torch.sin(position * div_term) | |
pe[:, 1::2] = torch.cos(position * div_term) | |
pe = pe.unsqueeze(0) | |
self.register_buffer("pe", pe) | |
def forward(self, | |
x: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0) \ | |
-> Tuple[torch.Tensor, torch.Tensor]: | |
"""Add positional encoding. | |
Args: | |
x (torch.Tensor): Input. Its shape is (batch, time, ...) | |
offset (int, torch.tensor): position offset | |
Returns: | |
torch.Tensor: Encoded tensor. Its shape is (batch, time, ...) | |
torch.Tensor: for compatibility to RelPositionalEncoding | |
""" | |
pos_emb = self.position_encoding(offset, x.size(1), False) | |
x = x * self.xscale + pos_emb | |
return self.dropout(x), self.dropout(pos_emb) | |
def position_encoding(self, | |
offset: Union[int, torch.Tensor], | |
size: int, | |
apply_dropout: bool = True) -> torch.Tensor: | |
""" For getting encoding in a streaming fashion | |
Attention!!!!! | |
we apply dropout only once at the whole utterance level in a none | |
streaming way, but will call this function several times with | |
increasing input size in a streaming scenario, so the dropout will | |
be applied several times. | |
Args: | |
offset (int or torch.tensor): start offset | |
size (int): required size of position encoding | |
Returns: | |
torch.Tensor: Corresponding encoding | |
""" | |
# How to subscript a Union type: | |
# https://github.com/pytorch/pytorch/issues/69434 | |
if isinstance(offset, int): | |
assert offset + size <= self.max_len | |
pos_emb = self.pe[:, offset:offset + size] | |
elif isinstance(offset, torch.Tensor) and offset.dim() == 0: # scalar | |
assert offset + size <= self.max_len | |
pos_emb = self.pe[:, offset:offset + size] | |
else: # for batched streaming decoding on GPU | |
assert torch.max(offset) + size <= self.max_len | |
index = offset.unsqueeze(1) + \ | |
torch.arange(0, size).to(offset.device) # B X T | |
flag = index > 0 | |
# remove negative offset | |
index = index * flag | |
pos_emb = F.embedding(index, self.pe[0]) # B X T X d_model | |
if apply_dropout: | |
pos_emb = self.dropout(pos_emb) | |
return pos_emb | |
class RelPositionalEncoding(PositionalEncoding): | |
"""Relative positional encoding module. | |
See : Appendix B in https://arxiv.org/abs/1901.02860 | |
Args: | |
d_model (int): Embedding dimension. | |
dropout_rate (float): Dropout rate. | |
max_len (int): Maximum input length. | |
""" | |
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 5000): | |
"""Initialize class.""" | |
super().__init__(d_model, dropout_rate, max_len, reverse=True) | |
def forward(self, | |
x: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0) \ | |
-> Tuple[torch.Tensor, torch.Tensor]: | |
"""Compute positional encoding. | |
Args: | |
x (torch.Tensor): Input tensor (batch, time, `*`). | |
Returns: | |
torch.Tensor: Encoded tensor (batch, time, `*`). | |
torch.Tensor: Positional embedding tensor (1, time, `*`). | |
""" | |
x = x * self.xscale | |
pos_emb = self.position_encoding(offset, x.size(1), False) | |
return self.dropout(x), self.dropout(pos_emb) | |
class WhisperPositionalEncoding(PositionalEncoding): | |
""" Sinusoids position encoding used in openai-whisper.encoder | |
""" | |
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 1500): | |
super().__init__(d_model, dropout_rate, max_len) | |
self.xscale = 1.0 | |
log_timescale_increment = np.log(10000) / (d_model // 2 - 1) | |
inv_timescales = torch.exp(-log_timescale_increment * | |
torch.arange(d_model // 2)) | |
scaled_time = torch.arange(max_len)[:, np.newaxis] * \ | |
inv_timescales[np.newaxis, :] | |
pe = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], dim=1) | |
delattr(self, "pe") | |
self.register_buffer("pe", pe.unsqueeze(0)) | |
class LearnablePositionalEncoding(PositionalEncoding): | |
""" Learnable position encoding used in openai-whisper.decoder | |
""" | |
def __init__(self, d_model: int, dropout_rate: float, max_len: int = 448): | |
super().__init__(d_model, dropout_rate, max_len) | |
# NOTE(xcsong): overwrite self.pe & self.xscale | |
self.pe = torch.nn.Parameter(torch.empty(1, max_len, d_model)) | |
self.xscale = 1.0 | |
class NoPositionalEncoding(torch.nn.Module): | |
""" No position encoding | |
""" | |
def __init__(self, d_model: int, dropout_rate: float): | |
super().__init__() | |
self.d_model = d_model | |
self.dropout = torch.nn.Dropout(p=dropout_rate) | |
def forward(self, | |
x: torch.Tensor, | |
offset: Union[int, torch.Tensor] = 0) \ | |
-> Tuple[torch.Tensor, torch.Tensor]: | |
""" Just return zero vector for interface compatibility | |
""" | |
pos_emb = torch.zeros(1, x.size(1), self.d_model).to(x.device) | |
return self.dropout(x), pos_emb | |
def position_encoding(self, offset: Union[int, torch.Tensor], | |
size: int) -> torch.Tensor: | |
return torch.zeros(1, size, self.d_model) | |
class RopePositionalEncoding(PositionalEncoding): | |
def __init__(self, | |
d_model: int, | |
head_dim: int, | |
dropout_rate: float, | |
max_len: int = 1500, | |
rope_theta=10000.0, | |
scale: bool = True): | |
super().__init__(d_model, dropout_rate=dropout_rate, max_len=max_len) | |
delattr(self, 'pe') | |
self.max_len = max_len * 2 | |
pe = precompute_freqs_cis(head_dim, self.max_len, rope_theta) | |
self.register_buffer("pe", torch.view_as_real(pe.unsqueeze(0))) | |
self.dropout_rate = dropout_rate | |
self.scale = scale | |
def forward( | |
self, | |
x: torch.Tensor, | |
offset: Union[int, | |
torch.Tensor] = 0) -> Tuple[torch.Tensor, torch.Tensor]: | |
pos_emb = self.position_encoding(offset, x.size(1), True) | |
pos_emb = pos_emb.unsqueeze(2) # [1,seq, 1, head_dim//2] | |
# NOTE(Mddct): some model don't scale | |
if self.scale: | |
x = x * self.xscale | |
return self.dropout(x), pos_emb | |
def position_encoding(self, | |
offset: Union[int, torch.Tensor], | |
size: int, | |
apply_dropout: bool = True) -> torch.Tensor: | |
pe = torch.view_as_complex(self.pe) | |
if isinstance(offset, int): | |
assert offset + size <= self.max_len | |
pos_emb = pe[:, offset:offset + size] | |
else: | |
assert torch.max(offset) + size <= self.max_len | |
index = offset.unsqueeze(1) + torch.arange(0, size).to( | |
offset.device) # B X T | |
flag = index > 0 | |
# remove negative offset | |
index = index * flag | |
pos_emb = F.embedding(index, pe[0]) # B X T X head_dim//2 | |
if apply_dropout: | |
# NOTE(Mddct) dropout don't suuport complex float for pos_emb | |
pos_emb = self.dropout_complex(pos_emb) | |
return pos_emb | |
def dropout_complex(self, x): | |
mask = torch.nn.functional.dropout( | |
torch.ones_like(x.real), | |
training=self.training, | |
p=self.dropout_rate, | |
) | |
return x * mask | |