Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2020 Mobvoi Inc (Di Wu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import os | |
import argparse | |
import glob | |
import sys | |
import yaml | |
import torch | |
def get_args(): | |
parser = argparse.ArgumentParser(description='average model') | |
parser.add_argument('--dst_model', required=True, help='averaged model') | |
parser.add_argument('--src_path', | |
required=True, | |
help='src model path for average') | |
parser.add_argument('--val_best', | |
action="store_true", | |
help='averaged model') | |
parser.add_argument('--num', | |
default=5, | |
type=int, | |
help='nums for averaged model') | |
parser.add_argument('--min_epoch', | |
default=0, | |
type=int, | |
help='min epoch used for averaging model') | |
parser.add_argument('--max_epoch', | |
default=sys.maxsize, | |
type=int, | |
help='max epoch used for averaging model') | |
parser.add_argument('--min_step', | |
default=0, | |
type=int, | |
help='min step used for averaging model') | |
parser.add_argument('--max_step', | |
default=sys.maxsize, | |
type=int, | |
help='max step used for averaging model') | |
parser.add_argument('--mode', | |
default="hybrid", | |
choices=["hybrid", "epoch", "step"], | |
type=str, | |
help='average mode') | |
args = parser.parse_args() | |
print(args) | |
return args | |
def main(): | |
args = get_args() | |
checkpoints = [] | |
val_scores = [] | |
if args.val_best: | |
if args.mode == "hybrid": | |
yamls = glob.glob('{}/*.yaml'.format(args.src_path)) | |
yamls = [ | |
f for f in yamls | |
if not (os.path.basename(f).startswith('train') | |
or os.path.basename(f).startswith('init')) | |
] | |
elif args.mode == "step": | |
yamls = glob.glob('{}/step_*.yaml'.format(args.src_path)) | |
else: | |
yamls = glob.glob('{}/epoch_*.yaml'.format(args.src_path)) | |
for y in yamls: | |
with open(y, 'r') as f: | |
dic_yaml = yaml.load(f, Loader=yaml.FullLoader) | |
loss = dic_yaml['loss_dict']['loss'] | |
epoch = dic_yaml['epoch'] | |
step = dic_yaml['step'] | |
tag = dic_yaml['tag'] | |
if epoch >= args.min_epoch and epoch <= args.max_epoch \ | |
and step >= args.min_step and step <= args.max_step: | |
val_scores += [[epoch, step, loss, tag]] | |
sorted_val_scores = sorted(val_scores, | |
key=lambda x: x[2], | |
reverse=False) | |
print("best val (epoch, step, loss, tag) = " + | |
str(sorted_val_scores[:args.num])) | |
path_list = [ | |
args.src_path + '/{}.pt'.format(score[-1]) | |
for score in sorted_val_scores[:args.num] | |
] | |
else: | |
path_list = glob.glob('{}/[!init]*.pt'.format(args.src_path)) | |
path_list = sorted(path_list, key=os.path.getmtime) | |
path_list = path_list[-args.num:] | |
print(path_list) | |
avg = {} | |
num = args.num | |
assert num == len(path_list) | |
for path in path_list: | |
print('Processing {}'.format(path)) | |
states = torch.load(path, map_location=torch.device('cpu')) | |
for k in states.keys(): | |
if k not in avg.keys(): | |
avg[k] = states[k].clone() | |
else: | |
avg[k] += states[k] | |
# average | |
for k in avg.keys(): | |
if avg[k] is not None: | |
# pytorch 1.6 use true_divide instead of /= | |
avg[k] = torch.true_divide(avg[k], num) | |
print('Saving to {}'.format(args.dst_model)) | |
torch.save(avg, args.dst_model) | |
if __name__ == '__main__': | |
main() | |