Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2020 Mobvoi Inc. (authors: Binbin Zhang, Di Wu) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import print_function | |
import argparse | |
import logging | |
import os | |
import torch | |
import yaml | |
from wenet.utils.init_model import init_model | |
def get_args(): | |
parser = argparse.ArgumentParser(description='export your script model') | |
parser.add_argument('--config', required=True, help='config file') | |
parser.add_argument('--checkpoint', required=True, help='checkpoint model') | |
parser.add_argument('--output_file', default=None, help='output file') | |
parser.add_argument('--output_quant_file', | |
default=None, | |
help='output quantized model file') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = get_args() | |
args.jit = True | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
# No need gpu for model export | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
with open(args.config, 'r') as fin: | |
configs = yaml.load(fin, Loader=yaml.FullLoader) | |
model, configs = init_model(args, configs) | |
model.eval() | |
print(model) | |
# Export jit torch script model | |
if args.output_file: | |
script_model = torch.jit.script(model) | |
script_model.save(args.output_file) | |
print('Export model successfully, see {}'.format(args.output_file)) | |
# Export quantized jit torch script model | |
if args.output_quant_file: | |
quantized_model = torch.quantization.quantize_dynamic( | |
model, {torch.nn.Linear}, dtype=torch.qint8) | |
print(quantized_model) | |
script_quant_model = torch.jit.script(quantized_model) | |
script_quant_model.save(args.output_quant_file) | |
print('Export quantized model successfully, ' | |
'see {}'.format(args.output_quant_file)) | |
if __name__ == '__main__': | |
main() | |