Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022, Xingchen Song ([email protected]) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from __future__ import print_function | |
import argparse | |
import logging | |
import os | |
import copy | |
import sys | |
import torch | |
import yaml | |
import numpy as np | |
from wenet.utils.init_model import init_model | |
try: | |
import onnx | |
import onnxruntime | |
from onnxruntime.quantization import quantize_dynamic, QuantType | |
except ImportError: | |
print('Please install onnx and onnxruntime!') | |
sys.exit(1) | |
def get_args(): | |
parser = argparse.ArgumentParser(description='export your script model') | |
parser.add_argument('--config', required=True, help='config file') | |
parser.add_argument('--checkpoint', required=True, help='checkpoint model') | |
parser.add_argument('--output_dir', required=True, help='output directory') | |
parser.add_argument('--chunk_size', | |
required=True, | |
type=int, | |
help='decoding chunk size') | |
parser.add_argument('--num_decoding_left_chunks', | |
required=True, | |
type=int, | |
help='cache chunks') | |
parser.add_argument('--reverse_weight', | |
default=0.5, | |
type=float, | |
help='reverse_weight in attention_rescoing') | |
args = parser.parse_args() | |
return args | |
def to_numpy(tensor): | |
if tensor.requires_grad: | |
return tensor.detach().cpu().numpy() | |
else: | |
return tensor.cpu().numpy() | |
def print_input_output_info(onnx_model, name, prefix="\t\t"): | |
input_names = [node.name for node in onnx_model.graph.input] | |
input_shapes = [[d.dim_value for d in node.type.tensor_type.shape.dim] | |
for node in onnx_model.graph.input] | |
output_names = [node.name for node in onnx_model.graph.output] | |
output_shapes = [[d.dim_value for d in node.type.tensor_type.shape.dim] | |
for node in onnx_model.graph.output] | |
print("{}{} inputs : {}".format(prefix, name, input_names)) | |
print("{}{} input shapes : {}".format(prefix, name, input_shapes)) | |
print("{}{} outputs: {}".format(prefix, name, output_names)) | |
print("{}{} output shapes : {}".format(prefix, name, output_shapes)) | |
def export_encoder(asr_model, args): | |
print("Stage-1: export encoder") | |
encoder = asr_model.encoder | |
encoder.forward = encoder.forward_chunk | |
encoder_outpath = os.path.join(args['output_dir'], 'encoder.onnx') | |
print("\tStage-1.1: prepare inputs for encoder") | |
chunk = torch.randn( | |
(args['batch'], args['decoding_window'], args['feature_size'])) | |
offset = 0 | |
# NOTE(xcsong): The uncertainty of `next_cache_start` only appears | |
# in the first few chunks, this is caused by dynamic att_cache shape, i,e | |
# (0, 0, 0, 0) for 1st chunk and (elayers, head, ?, d_k*2) for subsequent | |
# chunks. One way to ease the ONNX export is to keep `next_cache_start` | |
# as a fixed value. To do this, for the **first** chunk, if | |
# left_chunks > 0, we feed real cache & real mask to the model, otherwise | |
# fake cache & fake mask. In this way, we get: | |
# 1. 16/-1 mode: next_cache_start == 0 for all chunks | |
# 2. 16/4 mode: next_cache_start == chunk_size for all chunks | |
# 3. 16/0 mode: next_cache_start == chunk_size for all chunks | |
# 4. -1/-1 mode: next_cache_start == 0 for all chunks | |
# NO MORE DYNAMIC CHANGES!! | |
# | |
# NOTE(Mddct): We retain the current design for the convenience of supporting some | |
# inference frameworks without dynamic shapes. If you're interested in all-in-one | |
# model that supports different chunks please see: | |
# https://github.com/wenet-e2e/wenet/pull/1174 | |
if args['left_chunks'] > 0: # 16/4 | |
required_cache_size = args['chunk_size'] * args['left_chunks'] | |
offset = required_cache_size | |
# Real cache | |
att_cache = torch.zeros( | |
(args['num_blocks'], args['head'], required_cache_size, | |
args['output_size'] // args['head'] * 2)) | |
# Real mask | |
att_mask = torch.ones( | |
(args['batch'], 1, required_cache_size + args['chunk_size']), | |
dtype=torch.bool) | |
att_mask[:, :, :required_cache_size] = 0 | |
elif args['left_chunks'] <= 0: # 16/-1, -1/-1, 16/0 | |
required_cache_size = -1 if args['left_chunks'] < 0 else 0 | |
# Fake cache | |
att_cache = torch.zeros((args['num_blocks'], args['head'], 0, | |
args['output_size'] // args['head'] * 2)) | |
# Fake mask | |
att_mask = torch.ones((0, 0, 0), dtype=torch.bool) | |
cnn_cache = torch.zeros( | |
(args['num_blocks'], args['batch'], args['output_size'], | |
args['cnn_module_kernel'] - 1)) | |
inputs = (chunk, offset, required_cache_size, att_cache, cnn_cache, | |
att_mask) | |
print("\t\tchunk.size(): {}\n".format(chunk.size()), | |
"\t\toffset: {}\n".format(offset), | |
"\t\trequired_cache: {}\n".format(required_cache_size), | |
"\t\tatt_cache.size(): {}\n".format(att_cache.size()), | |
"\t\tcnn_cache.size(): {}\n".format(cnn_cache.size()), | |
"\t\tatt_mask.size(): {}\n".format(att_mask.size())) | |
print("\tStage-1.2: torch.onnx.export") | |
dynamic_axes = { | |
'chunk': { | |
1: 'T' | |
}, | |
'att_cache': { | |
2: 'T_CACHE' | |
}, | |
'att_mask': { | |
2: 'T_ADD_T_CACHE' | |
}, | |
'output': { | |
1: 'T' | |
}, | |
'r_att_cache': { | |
2: 'T_CACHE' | |
}, | |
} | |
# NOTE(xcsong): We keep dynamic axes even if in 16/4 mode, this is | |
# to avoid padding the last chunk (which usually contains less | |
# frames than required). For users who want static axes, just pop | |
# out specific axis. | |
# if args['chunk_size'] > 0: # 16/4, 16/-1, 16/0 | |
# dynamic_axes.pop('chunk') | |
# dynamic_axes.pop('output') | |
# if args['left_chunks'] >= 0: # 16/4, 16/0 | |
# # NOTE(xsong): since we feed real cache & real mask into the | |
# # model when left_chunks > 0, the shape of cache will never | |
# # be changed. | |
# dynamic_axes.pop('att_cache') | |
# dynamic_axes.pop('r_att_cache') | |
torch.onnx.export(encoder, | |
inputs, | |
encoder_outpath, | |
opset_version=13, | |
export_params=True, | |
do_constant_folding=True, | |
input_names=[ | |
'chunk', 'offset', 'required_cache_size', | |
'att_cache', 'cnn_cache', 'att_mask' | |
], | |
output_names=['output', 'r_att_cache', 'r_cnn_cache'], | |
dynamic_axes=dynamic_axes, | |
verbose=False) | |
onnx_encoder = onnx.load(encoder_outpath) | |
for (k, v) in args.items(): | |
meta = onnx_encoder.metadata_props.add() | |
meta.key, meta.value = str(k), str(v) | |
onnx.checker.check_model(onnx_encoder) | |
onnx.helper.printable_graph(onnx_encoder.graph) | |
# NOTE(xcsong): to add those metadatas we need to reopen | |
# the file and resave it. | |
onnx.save(onnx_encoder, encoder_outpath) | |
print_input_output_info(onnx_encoder, "onnx_encoder") | |
# Dynamic quantization | |
model_fp32 = encoder_outpath | |
model_quant = os.path.join(args['output_dir'], 'encoder.quant.onnx') | |
quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
print('\t\tExport onnx_encoder, done! see {}'.format(encoder_outpath)) | |
print("\tStage-1.3: check onnx_encoder and torch_encoder") | |
torch_output = [] | |
torch_chunk = copy.deepcopy(chunk) | |
torch_offset = copy.deepcopy(offset) | |
torch_required_cache_size = copy.deepcopy(required_cache_size) | |
torch_att_cache = copy.deepcopy(att_cache) | |
torch_cnn_cache = copy.deepcopy(cnn_cache) | |
torch_att_mask = copy.deepcopy(att_mask) | |
for i in range(10): | |
print("\t\ttorch chunk-{}: {}, offset: {}, att_cache: {}," | |
" cnn_cache: {}, att_mask: {}".format( | |
i, list(torch_chunk.size()), torch_offset, | |
list(torch_att_cache.size()), list(torch_cnn_cache.size()), | |
list(torch_att_mask.size()))) | |
# NOTE(xsong): att_mask of the first few batches need changes if | |
# we use 16/4 mode. | |
if args['left_chunks'] > 0: # 16/4 | |
torch_att_mask[:, :, -(args['chunk_size'] * (i + 1)):] = 1 | |
out, torch_att_cache, torch_cnn_cache = encoder( | |
torch_chunk, torch_offset, torch_required_cache_size, | |
torch_att_cache, torch_cnn_cache, torch_att_mask) | |
torch_output.append(out) | |
torch_offset += out.size(1) | |
torch_output = torch.cat(torch_output, dim=1) | |
onnx_output = [] | |
onnx_chunk = to_numpy(chunk) | |
onnx_offset = np.array((offset)).astype(np.int64) | |
onnx_required_cache_size = np.array((required_cache_size)).astype(np.int64) | |
onnx_att_cache = to_numpy(att_cache) | |
onnx_cnn_cache = to_numpy(cnn_cache) | |
onnx_att_mask = to_numpy(att_mask) | |
ort_session = onnxruntime.InferenceSession( | |
encoder_outpath, providers=['CPUExecutionProvider']) | |
input_names = [node.name for node in onnx_encoder.graph.input] | |
for i in range(10): | |
print("\t\tonnx chunk-{}: {}, offset: {}, att_cache: {}," | |
" cnn_cache: {}, att_mask: {}".format(i, onnx_chunk.shape, | |
onnx_offset, | |
onnx_att_cache.shape, | |
onnx_cnn_cache.shape, | |
onnx_att_mask.shape)) | |
# NOTE(xsong): att_mask of the first few batches need changes if | |
# we use 16/4 mode. | |
if args['left_chunks'] > 0: # 16/4 | |
onnx_att_mask[:, :, -(args['chunk_size'] * (i + 1)):] = 1 | |
ort_inputs = { | |
'chunk': onnx_chunk, | |
'offset': onnx_offset, | |
'required_cache_size': onnx_required_cache_size, | |
'att_cache': onnx_att_cache, | |
'cnn_cache': onnx_cnn_cache, | |
'att_mask': onnx_att_mask | |
} | |
# NOTE(xcsong): If we use 16/-1, -1/-1 or 16/0 mode, `next_cache_start` | |
# will be hardcoded to 0 or chunk_size by ONNX, thus | |
# required_cache_size and att_mask are no more needed and they will | |
# be removed by ONNX automatically. | |
for k in list(ort_inputs): | |
if k not in input_names: | |
ort_inputs.pop(k) | |
ort_outs = ort_session.run(None, ort_inputs) | |
onnx_att_cache, onnx_cnn_cache = ort_outs[1], ort_outs[2] | |
onnx_output.append(ort_outs[0]) | |
onnx_offset += ort_outs[0].shape[1] | |
onnx_output = np.concatenate(onnx_output, axis=1) | |
np.testing.assert_allclose(to_numpy(torch_output), | |
onnx_output, | |
rtol=1e-03, | |
atol=1e-05) | |
meta = ort_session.get_modelmeta() | |
print("\t\tcustom_metadata_map={}".format(meta.custom_metadata_map)) | |
print("\t\tCheck onnx_encoder, pass!") | |
def export_ctc(asr_model, args): | |
print("Stage-2: export ctc") | |
ctc = asr_model.ctc | |
ctc.forward = ctc.log_softmax | |
ctc_outpath = os.path.join(args['output_dir'], 'ctc.onnx') | |
print("\tStage-2.1: prepare inputs for ctc") | |
hidden = torch.randn( | |
(args['batch'], args['chunk_size'] if args['chunk_size'] > 0 else 16, | |
args['output_size'])) | |
print("\tStage-2.2: torch.onnx.export") | |
dynamic_axes = {'hidden': {1: 'T'}, 'probs': {1: 'T'}} | |
torch.onnx.export(ctc, | |
hidden, | |
ctc_outpath, | |
opset_version=13, | |
export_params=True, | |
do_constant_folding=True, | |
input_names=['hidden'], | |
output_names=['probs'], | |
dynamic_axes=dynamic_axes, | |
verbose=False) | |
onnx_ctc = onnx.load(ctc_outpath) | |
for (k, v) in args.items(): | |
meta = onnx_ctc.metadata_props.add() | |
meta.key, meta.value = str(k), str(v) | |
onnx.checker.check_model(onnx_ctc) | |
onnx.helper.printable_graph(onnx_ctc.graph) | |
onnx.save(onnx_ctc, ctc_outpath) | |
print_input_output_info(onnx_ctc, "onnx_ctc") | |
# Dynamic quantization | |
model_fp32 = ctc_outpath | |
model_quant = os.path.join(args['output_dir'], 'ctc.quant.onnx') | |
quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
print('\t\tExport onnx_ctc, done! see {}'.format(ctc_outpath)) | |
print("\tStage-2.3: check onnx_ctc and torch_ctc") | |
torch_output = ctc(hidden) | |
ort_session = onnxruntime.InferenceSession( | |
ctc_outpath, providers=['CPUExecutionProvider']) | |
onnx_output = ort_session.run(None, {'hidden': to_numpy(hidden)}) | |
np.testing.assert_allclose(to_numpy(torch_output), | |
onnx_output[0], | |
rtol=1e-03, | |
atol=1e-05) | |
print("\t\tCheck onnx_ctc, pass!") | |
def export_decoder(asr_model, args): | |
print("Stage-3: export decoder") | |
decoder = asr_model | |
# NOTE(lzhin): parameters of encoder will be automatically removed | |
# since they are not used during rescoring. | |
decoder.forward = decoder.forward_attention_decoder | |
decoder_outpath = os.path.join(args['output_dir'], 'decoder.onnx') | |
print("\tStage-3.1: prepare inputs for decoder") | |
# hardcode time->200 nbest->10 len->20, they are dynamic axes. | |
encoder_out = torch.randn((1, 200, args['output_size'])) | |
hyps = torch.randint(low=0, high=args['vocab_size'], size=[10, 20]) | |
hyps[:, 0] = args['vocab_size'] - 1 # <sos> | |
hyps_lens = torch.randint(low=15, high=21, size=[10]) | |
print("\tStage-3.2: torch.onnx.export") | |
dynamic_axes = { | |
'hyps': { | |
0: 'NBEST', | |
1: 'L' | |
}, | |
'hyps_lens': { | |
0: 'NBEST' | |
}, | |
'encoder_out': { | |
1: 'T' | |
}, | |
'score': { | |
0: 'NBEST', | |
1: 'L' | |
}, | |
'r_score': { | |
0: 'NBEST', | |
1: 'L' | |
} | |
} | |
inputs = (hyps, hyps_lens, encoder_out, args['reverse_weight']) | |
torch.onnx.export( | |
decoder, | |
inputs, | |
decoder_outpath, | |
opset_version=13, | |
export_params=True, | |
do_constant_folding=True, | |
input_names=['hyps', 'hyps_lens', 'encoder_out', 'reverse_weight'], | |
output_names=['score', 'r_score'], | |
dynamic_axes=dynamic_axes, | |
verbose=False) | |
onnx_decoder = onnx.load(decoder_outpath) | |
for (k, v) in args.items(): | |
meta = onnx_decoder.metadata_props.add() | |
meta.key, meta.value = str(k), str(v) | |
onnx.checker.check_model(onnx_decoder) | |
onnx.helper.printable_graph(onnx_decoder.graph) | |
onnx.save(onnx_decoder, decoder_outpath) | |
print_input_output_info(onnx_decoder, "onnx_decoder") | |
model_fp32 = decoder_outpath | |
model_quant = os.path.join(args['output_dir'], 'decoder.quant.onnx') | |
quantize_dynamic(model_fp32, model_quant, weight_type=QuantType.QUInt8) | |
print('\t\tExport onnx_decoder, done! see {}'.format(decoder_outpath)) | |
print("\tStage-3.3: check onnx_decoder and torch_decoder") | |
torch_score, torch_r_score = decoder(hyps, hyps_lens, encoder_out, | |
args['reverse_weight']) | |
ort_session = onnxruntime.InferenceSession( | |
decoder_outpath, providers=['CPUExecutionProvider']) | |
input_names = [node.name for node in onnx_decoder.graph.input] | |
ort_inputs = { | |
'hyps': to_numpy(hyps), | |
'hyps_lens': to_numpy(hyps_lens), | |
'encoder_out': to_numpy(encoder_out), | |
'reverse_weight': np.array((args['reverse_weight'])), | |
} | |
for k in list(ort_inputs): | |
if k not in input_names: | |
ort_inputs.pop(k) | |
onnx_output = ort_session.run(None, ort_inputs) | |
np.testing.assert_allclose(to_numpy(torch_score), | |
onnx_output[0], | |
rtol=1e-03, | |
atol=1e-05) | |
if args['is_bidirectional_decoder'] and args['reverse_weight'] > 0.0: | |
np.testing.assert_allclose(to_numpy(torch_r_score), | |
onnx_output[1], | |
rtol=1e-03, | |
atol=1e-05) | |
print("\t\tCheck onnx_decoder, pass!") | |
def main(): | |
torch.manual_seed(777) | |
args = get_args() | |
logging.basicConfig(level=logging.DEBUG, | |
format='%(asctime)s %(levelname)s %(message)s') | |
output_dir = args.output_dir | |
os.system("mkdir -p " + output_dir) | |
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' | |
with open(args.config, 'r') as fin: | |
configs = yaml.load(fin, Loader=yaml.FullLoader) | |
model, configs = init_model(args, configs) | |
model.eval() | |
print(model) | |
arguments = {} | |
arguments['output_dir'] = output_dir | |
arguments['batch'] = 1 | |
arguments['chunk_size'] = args.chunk_size | |
arguments['left_chunks'] = args.num_decoding_left_chunks | |
arguments['reverse_weight'] = args.reverse_weight | |
arguments['output_size'] = configs['encoder_conf']['output_size'] | |
arguments['num_blocks'] = configs['encoder_conf']['num_blocks'] | |
arguments['cnn_module_kernel'] = configs['encoder_conf'].get( | |
'cnn_module_kernel', 1) | |
arguments['head'] = configs['encoder_conf']['attention_heads'] | |
arguments['feature_size'] = configs['input_dim'] | |
arguments['vocab_size'] = configs['output_dim'] | |
# NOTE(xcsong): if chunk_size == -1, hardcode to 67 | |
arguments['decoding_window'] = (args.chunk_size - 1) * \ | |
model.encoder.embed.subsampling_rate + \ | |
model.encoder.embed.right_context + 1 if args.chunk_size > 0 else 67 | |
arguments['encoder'] = configs['encoder'] | |
arguments['decoder'] = configs['decoder'] | |
arguments['subsampling_rate'] = model.subsampling_rate() | |
arguments['right_context'] = model.right_context() | |
arguments['sos_symbol'] = model.sos_symbol() | |
arguments['eos_symbol'] = model.eos_symbol() | |
arguments['is_bidirectional_decoder'] = 1 \ | |
if model.is_bidirectional_decoder() else 0 | |
# NOTE(xcsong): Please note that -1/-1 means non-streaming model! It is | |
# not a [16/4 16/-1 16/0] all-in-one model and it should not be used in | |
# streaming mode (i.e., setting chunk_size=16 in `decoder_main`). If you | |
# want to use 16/-1 or any other streaming mode in `decoder_main`, | |
# please export onnx in the same config. | |
if arguments['left_chunks'] > 0: | |
assert arguments['chunk_size'] > 0 # -1/4 not supported | |
export_encoder(model, arguments) | |
export_ctc(model, arguments) | |
export_decoder(model, arguments) | |
if __name__ == '__main__': | |
main() | |