Spaces:
Running
on
Zero
Running
on
Zero
# Copyright (c) 2022 Yifan Peng (Carnegie Mellon University) | |
# 2023 Voicecomm Inc (Kai Li) | |
# 2023 Lucky Wong | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Modified from ESPnet(https://github.com/espnet/espnet) | |
"""EBranchformerEncoderLayer definition.""" | |
import torch | |
import torch.nn as nn | |
from typing import Optional, Tuple | |
from wenet.transformer.attention import T_CACHE | |
class EBranchformerEncoderLayer(torch.nn.Module): | |
"""E-Branchformer encoder layer module. | |
Args: | |
size (int): model dimension | |
attn: standard self-attention or efficient attention | |
cgmlp: ConvolutionalGatingMLP | |
feed_forward: feed-forward module, optional | |
feed_forward: macaron-style feed-forward module, optional | |
dropout_rate (float): dropout probability | |
merge_conv_kernel (int): kernel size of the depth-wise conv in merge module | |
""" | |
def __init__( | |
self, | |
size: int, | |
attn: torch.nn.Module, | |
cgmlp: torch.nn.Module, | |
feed_forward: Optional[torch.nn.Module], | |
feed_forward_macaron: Optional[torch.nn.Module], | |
dropout_rate: float, | |
merge_conv_kernel: int = 3, | |
causal: bool = True, | |
stochastic_depth_rate=0.0, | |
): | |
super().__init__() | |
self.size = size | |
self.attn = attn | |
self.cgmlp = cgmlp | |
self.feed_forward = feed_forward | |
self.feed_forward_macaron = feed_forward_macaron | |
self.ff_scale = 1.0 | |
if self.feed_forward is not None: | |
self.norm_ff = nn.LayerNorm(size) | |
if self.feed_forward_macaron is not None: | |
self.ff_scale = 0.5 | |
self.norm_ff_macaron = nn.LayerNorm(size) | |
self.norm_mha = nn.LayerNorm(size) # for the MHA module | |
self.norm_mlp = nn.LayerNorm(size) # for the MLP module | |
# for the final output of the block | |
self.norm_final = nn.LayerNorm(size) | |
self.dropout = torch.nn.Dropout(dropout_rate) | |
if causal: | |
padding = 0 | |
self.lorder = merge_conv_kernel - 1 | |
else: | |
# kernel_size should be an odd number for none causal convolution | |
assert (merge_conv_kernel - 1) % 2 == 0 | |
padding = (merge_conv_kernel - 1) // 2 | |
self.lorder = 0 | |
self.depthwise_conv_fusion = torch.nn.Conv1d( | |
size + size, | |
size + size, | |
kernel_size=merge_conv_kernel, | |
stride=1, | |
padding=padding, | |
groups=size + size, | |
bias=True, | |
) | |
self.merge_proj = torch.nn.Linear(size + size, size) | |
self.stochastic_depth_rate = stochastic_depth_rate | |
def _forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: T_CACHE = (torch.zeros( | |
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
stoch_layer_coeff: float = 1.0 | |
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]: | |
if self.feed_forward_macaron is not None: | |
residual = x | |
x = self.norm_ff_macaron(x) | |
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( | |
self.feed_forward_macaron(x)) | |
# Two branches | |
x1 = x | |
x2 = x | |
# Branch 1: multi-headed attention module | |
x1 = self.norm_mha(x1) | |
x_att, new_att_cache = self.attn(x1, x1, x1, mask, pos_emb, att_cache) | |
x1 = self.dropout(x_att) | |
# Branch 2: convolutional gating mlp | |
# Fake new cnn cache here, and then change it in conv_module | |
new_cnn_cache = torch.zeros((0, 0, 0), dtype=x.dtype, device=x.device) | |
x2 = self.norm_mlp(x2) | |
x2, new_cnn_cache = self.cgmlp(x2, mask_pad, cnn_cache) | |
x2 = self.dropout(x2) | |
# Merge two branches | |
x_concat = torch.cat([x1, x2], dim=-1) | |
x_tmp = x_concat.transpose(1, 2) | |
if self.lorder > 0: | |
x_tmp = nn.functional.pad(x_tmp, (self.lorder, 0), "constant", 0.0) | |
assert x_tmp.size(2) > self.lorder | |
x_tmp = self.depthwise_conv_fusion(x_tmp) | |
x_tmp = x_tmp.transpose(1, 2) | |
x = x + stoch_layer_coeff * self.dropout( | |
self.merge_proj(x_concat + x_tmp)) | |
if self.feed_forward is not None: | |
# feed forward module | |
residual = x | |
x = self.norm_ff(x) | |
x = residual + stoch_layer_coeff * self.ff_scale * self.dropout( | |
self.feed_forward(x)) | |
x = self.norm_final(x) | |
return x, mask, new_att_cache, new_cnn_cache | |
def forward( | |
self, | |
x: torch.Tensor, | |
mask: torch.Tensor, | |
pos_emb: torch.Tensor, | |
mask_pad: torch.Tensor = torch.ones((0, 0, 0), dtype=torch.bool), | |
att_cache: T_CACHE = (torch.zeros( | |
(0, 0, 0, 0)), torch.zeros(0, 0, 0, 0)), | |
cnn_cache: torch.Tensor = torch.zeros((0, 0, 0, 0)), | |
) -> Tuple[torch.Tensor, torch.Tensor, T_CACHE, torch.Tensor]: | |
"""Compute encoded features. | |
Args: | |
x (Union[Tuple, torch.Tensor]): Input tensor (#batch, time, size). | |
mask (torch.Tensor): Mask tensor for the input (#batch, time, time). | |
pos_emb (torch.Tensor): positional encoding, must not be None | |
for BranchformerEncoderLayer. | |
mask_pad (torch.Tensor): batch padding mask used for conv module. | |
(#batch, 1,time), (0, 0, 0) means fake mask. | |
att_cache (torch.Tensor): Cache tensor of the KEY & VALUE | |
(#batch=1, head, cache_t1, d_k * 2), head * d_k == size. | |
cnn_cache (torch.Tensor): Convolution cache in cgmlp layer | |
(#batch=1, size, cache_t2) | |
Returns: | |
torch.Tensor: Output tensor (#batch, time, size). | |
torch.Tensor: Mask tensor (#batch, time, time. | |
torch.Tensor: att_cache tensor, | |
(#batch=1, head, cache_t1 + time, d_k * 2). | |
torch.Tensor: cnn_cahce tensor (#batch, size, cache_t2). | |
""" | |
stoch_layer_coeff = 1.0 | |
# with stochastic depth, residual connection `x + f(x)` becomes | |
# `x <- x + 1 / (1 - p) * f(x)` at training time. | |
if self.training: | |
stoch_layer_coeff = 1.0 / (1 - self.stochastic_depth_rate) | |
return self._forward(x, mask, pos_emb, mask_pad, att_cache, cnn_cache, | |
stoch_layer_coeff) | |